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Abstract

For hierarchical multivarariates outcomes, the FDA recommends the Win Ratio and
Generalized Pairwise Comparisons approaches Pocock et al. [2011], Buyse [2010]. However,
as far as we know, these empirical methods lack causal or statistical foundations to justify
their broader use in recent studies. To address this gap, we establish causal foundations for
hierarchical comparison methods. We define related causal effect measures, and highlight
that depending on the methodology used to compute Win Ratio, the causal estimand
targeted can be different, as proved by our consistency results, which may then lead to
reversed and incorrect treatment recommendations in heterogeneous populations, as we
illustrate through striking examples.

In order to compensate for this fallacy, we introduce a novel, individual-level yet identi-
fiable causal effect measure that better approximates the ideal, non-identifiable individual-
level estimand. We prove that computing Win Ratio or Net Benefits using a Nearest
Neighbor pairing approach between treated and controlled patients, an approach that can
be seen as an extreme form of stratification, leads to estimating this new causal estimand
measure. We extend our methods to observational settings via propensity weighting, distri-
butional regression to address the curse of dimensionality, and a doubly robust framework.
We prove the consistency of our methods, and the double robustness of our augmented
estimator. These methods are straightforward to implement, making them accessible to
practitioners. Finally, we validate our approach using synthetic data and on CRASH-3
[CRASH et al., 2019], a major clinical trial focused on assessing the effects of tranexamic
acid in patients with traumatic brain injury.

Keywords: Hierarchical Outcomes Analysis, Multiple Outcomes, Randomized Control Trials,
Observational data, Distributional Regression.
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1 Introduction

Quantifying the benefit of a treatment in clinical research can be challenging, especially when

outcomes are complex, multidimensional, or involve competing risks. Traditional statistical

approaches often struggle to capture the nuanced relationships between such outcomes, limiting

their ability to provide clinically meaningful insights. In these cases, innovative methods are

required to address the inherent complexity of the data, to go beyond considering a single

composite summary outcome. The Win Ratio [Pocock et al., 2011] and Generalized Pairwise

Comparisons [Buyse, 2010] have emerged as powerful tools to evaluate treatment effects by

comparing groups through hierarchical and multidimensional assessments of outcomes, to the

point where they appear in the recent Food and Drugs Administration (FDA) guidances for

handling multiple outcomes (see the FDA report Multiple Endpoints in Clinical Trials Guidance

for Industry, 2022 ).

Clinical trials often involve competing risks and multiple outcomes, where prioritizing one

type of event over another can lead to more clinically meaningful interpretations. For example,

in cardiovascular (CV) studies, time to death may be prioritized over hospitalizations, reflect-

ing the relative importance of these events to patients and clinicians. The Win Ratio and

General Pairwise Comparisons provide a natural mechanism to account for this prioritization

by structuring comparisons hierarchically, allowing for multidimensional comparisons and nu-

anced definitions of “wins” and “losses.” Pocock et al. [2011], Buyse [2010] form pairs of patients,

each pair consisting of a patient in the control group and a treated patient. Each pair is then

considered as a “Win” if the outcome of the treated patient is considered as more favorable

than the control one, as a “Loss” if it is considered as less favorable, and as a “Null” if the

two patient outcomes are comparable. We here illustrate the hierarchical comparison process,

drawing inspiration from examples in cardiovascular trials [Pocock et al., 2011, Redfors et al.,
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2020]. These studies evaluate multiple endpoints consisting of death, stroke, and heart failure

hospitalizations (HFH), prioritizing events based on their clinical severity. In this hierarchy,

death is considered the most severe outcome, followed by stroke, and finally HFH. For each pa-

tient pair, comparisons proceed as follows. (i) Determine which patient died first during their

shared follow-up period. If one patient died earlier, the other patient is deemed the "winner"

for this pair. (ii) If neither patient died, assess who experienced a stroke first. The patient with

the later or no stroke is considered the "winner." (iii) If neither patient died nor had a stroke,

compare the number of HFHs during follow-up. The patient with fewer HFHs is declared the

"winner." This hierarchical process stops at the first event that distinguishes between a win or

loss for the pair. If no event differentiates the pair, the outcome is recorded as a tie: depending

on the methodology used, a tie can then be counted as a loss, as 1/2 instead of 1 or 0 (for

respectively win or loss), or simply discarded. This approach ensures that clinically meaningful

priorities are respected while maximizing the utility of the available data. For Yi and Yj the

(multidimensional) outcomes of two patients i and j, respectively treated and controlled, we

write

Yi ą Yj ,

for a win of i over j and Yi „ Yj for a tie. The Win-Proportion is then defined as

Win Proportion def
“

#Wins
#Pairs ,

the Win Ratio [Pocock et al., 2011] as:

Win Ratio def
“

#Wins
#Losses ,

and the Net-Benefit of the treatment [Buyse, 2010] as:

Net Benefit def
“

#Wins ´ #Losses
#Pairs .
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Treatment recommendations are then made using these computed values. If the win proportion

is (significantly) above 0.5, treatment should be preferred over non-treatment, while for the Win

Ratio and the Net Benefit the threshold values are respectively 1 and 0.

1.1 Contributions and outline of the paper

The way pairs of treated and control patients are formed is determined by the methodology

chosen for the trial. Complete pairings are the historical prominent approach [Pocock et al.,

2011, Buyse, 2010], and consist of choosing all possible pairs of treated and controlled individ-

uals. Formally, if N1 and N0 are respectively the set of treated and controlled patients, the

set of pairs used for complete pairings is CTot “ N1 ˆ N0. Dong et al. [2018] then introduced

the stratified Win Ratio, an approach that consists in stratifying patients according to risks.

In terms of pairings, the stratified approach translates into choosing pairs of treated and con-

trolled patients that should have similar responses to treatment. Stratifying thus requires to

evaluate risks, based on available covariates denoted as Xi for some patient i. In this paper, we

introduce a third pairing approach: Nearest Neighbor pairings, that consist in choosing pairs

CNN Ă N0 ˆ N1 such that for all pi, jq P CNN, i is the treated patient with features Xi that are

the closest features amongst all controlled patients to the features Xj of the controlled patient

j. Nearest Neighbor pairings are in fact reminiscent of stratified pairings, since they can be

seen as the extreme limit of stratification.
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Comparison of the win proportions computed with Nearest Neighbors and Complete Pairings

Figure 1: Comparison of the win proportion pW computed with complete pairings and Nearest

Neighbor pairings. Setting of Example 1. Boxplots over 100 runs. The two approaches lead to

different treatment recommendations (above and below 0.5).

Our first contribution in this paper is to expose the fact that considering different pairings

between treated and controlled patients (complete pairings or Nearest Neighbor pairings) may

lead to different treatment recommendations. We illustrate this in Figure 1 on a simple synthetic

example. This has major consequences: choosing different methodologies leads to different

treatment recommendations. We argue that this is because these methods are typically limited

to descriptive settings, relying on empirical procedures without a formal causal foundation.

For instance, there is no well-defined estimand for what the Win Proportion, Win Ratio, and

Net Benefit estimators seek at estimating. Despite their utility, integrating these methods

into a cohesive causal inference framework remains underexplored. This paper formalizes Win

Ratio and General Pairwise Comparisons approaches within a counterfactual paradigm [Splawa-

Neyman et al., 1990], enabling a more robust interpretation of treatment effects in terms of

potential outcomes. By doing so, we aim at addressing the limitations of existing methodologies
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to bridge the gap between descriptive statistical techniques and causal reasoning, facilitating

their application in complex clinical trials and broadening their use to observational studies.

In particular, studying hierarchical comparisons in a causal inference frameworks leads to

introducing estimands for our estimators. We show that depending on the choice of pairings

considered, the estimand approached may change and have dramatically different properties,

thus explaining Figure 1. With complete pairings and in randomized controlled trials, the Win

Proportion is a consistent estimator of the following causal estimand: 1

P pYi ą Yjq ,

where i and j are respectively two treated and controlled patients. This estimand is a population-

level estimand. It as such does not capture the individual-level treatment effects: it is the

probability that an individual sampled uniformly with treatment fares better than another

individual sampled uniformly without treatment. An individual-level estimand would instead

be the probability that a given individual fares better with than without treatment. Given Yip1q

and Yip0q the potential outcomes of a given patient with and without treatment [Splawa-Neyman

et al., 1990], this ideal individual-level estimand formally writes as:

P pYip1q ą Yip0qq .

However, this causal estimand is non-identifiable. It depends on the joint distribution of the

potential outcomes, which is never observed. These two estimands were previously mentionned

in a series of works [Mao, 2017, Guo and Ni, 2022, Chen et al., 2024, Yin et al., 2022, Zhang

et al., 2022, Chiaruttini et al., 2024].

Our next contribution is thus to introduce a new identifiable and individual-level estimand,

that will serve as proxy for the non-identifiable individual-level causal estimand previously
1Note that our framework in the paper goes beyond estimating probabilities, and that for generality purposes

we instead formalize this as E rwpYi, Yjqs for some contrast or win function w. The particular example presented

in the introduction for readability purposes is wpy, y1q “ 1tyąy1u.
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defined. Our proxy is a better proxy than the population-level estimand, as it compares the

outcome of an individual being treated, with the outcome of a controlled patient that has

the exact same features, rather than any random controlled patient. Informally, our newly

introduced estimand writes as

P pYi ą Yi1q ,

where i is a treated patient, and i1 an independent controlled patient that satisfies Xi1 “

Xi (i1 may not exist, it is the result of a mind experiment). We show that in randomized

controlled trials, the Win Proportion with Nearest Neighbors pairings is a consistent estimator

for the causal estimand we introduce, thereby proving its identifiability. Using a simple example,

we show that our newly introduced estimand should be preferred over the population-level

estimand, making appear a paradox where changing the causal measure changes treatment

effects. We provide discussions on the properties of our estimand in Section 2.3.

The last methodology part of the paper is devoted to estimating the estimand we introduce.

In Section 4, we extend the Nearest Neighbors approach to the observational setting by incor-

porating propensity weights. In order to face the fact that Nearest Neighbors may be slow to

converge in the presence of high dimensional input features and to face their lack of robustness in

the presence of missing data in the covariates, we introduce a distributional regression approach

in Section 4.2 to estimate our new causal estimand. The distributional regression estimators we

propose benefit from very simple implementations, and as such we believe they can be easily

used by practitioners. We propose a doubly-robust estimator, that combines the strengths of

the distributional regression approach and of the weighted Nearest Neighbors approach.

We finally illustrate our methodologies on synthetically generated observational data and

on a real world RCT. The CRASH-3 trial (Clinical Randomisation of an Antifibrinolytic in

Significant Head Injury) was a large-scale, multi-center randomized controlled trial (RCT) that

included over 12,000 patients in 175 hospitals across 29 countries. In particular, our Win Ratio
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study of the CRASH-3 dataset in Section 6 [CRASH et al., 2019] compares the existing Win

Ratio methodologies with our proposed methods. We offer guidances to compute Win Ratio and

confidence intervals for the estimators, and our illustration on the CRASH-3 dataset shows that

while traditional approaches fail to offer statistically significant results (1 is in the computed

confidence intervals), the methods we propose in this paper offer significant results (in favor of

placebo treatment here), due to the fact that an individual-level estimand is being targeted,

rather than a population-level one.

1.2 Related works

Hierarchical Outcome Analysis and practical advancements. Pocock et al. [2011],

Buyse [2010] introduced the Win Ratio and Generalized Pairwise Comparisons with the Net

Benefit of a treatment. These methodologies are inspired by Wilcoxon-Mann-Whitney tests

[Wilcoxon, 1945, Mann and Whitney, 1947], that consist in testing if a real-valued random

variable Y is stochastically larger than another random variable Z. The quantity that arises

in such tests is 1tY ěZu and its mean, P pY ě Zq. Several studies have employed the Win Ra-

tio or Generalized Pairwise Comparisons methodologies to analyze hierarchical outcomes. For

instance, Pocock et al. [2023] used a stratified Win Ratio approach in the EMPULSE trial,

which included 530 patients evenly split between treatment and placebo groups. Their analysis

demonstrated how comparisons of all patient pairs contributed to "wins" for empagliflozin and

placebo across four levels of the outcome hierarchy, resulting in an unstratified Win Ratio of

1.38, with accompanying confidence intervals and related metrics. They also discussed appro-

priate and inappropriate interpretations of this ratio. Similarly, Backer et al. [2024] applied

hierarchical analysis to study reductions in treatment dosage and intensity for acute promyelo-

cytic leukemia using Generalized Pairwise Comparisons, prioritizing efficacy outcomes such as

event-free survival at two years over tolerability outcomes, including four pre-specified toxicities

8



common in this context. In another example, Boentert et al. [2024] applied the Win Ratio

methodology to the COMET trial [Diaz-Manera et al., 2021], a Phase 3 study on late-onset

Pompe disease. Their analysis showcased how the Win Ratio approach could be used to assess

multiple endpoints in the orphan drug context, providing a more comprehensive evaluation of

treatment benefits compared to previous analyses of the COMET trial.

Redfors et al. [2020] provide a comprehensive overview of the Win Ratio methodology, of-

fering insights into its design and reporting for clinical studies. Ajufo et al. [2023] highlight

several fallacies associated with the Win Ratio and Generalized Pairwise Comparisons. These

include the observation that a "win" does not always equate to a clinically meaningful benefit,

emphasizing the importance of accounting for "ties" or "nulls" rather than ignoring them. They

also caution that using patient-reported outcomes in comparisons may introduce biases and that

baseline risk stratification may not fully balance the risk profiles of paired subjects. Additionally,

Mao [2024] identify further limitations of hierarchical comparison methods, such as challenges

related to outcome censoring. A major issue with current Win Ratio and Generalized Pairwise

Comparisons lies in the fact that these methodologies are only restricted to Randomized Con-

trolled Trials (RCTs) and cannot be applied to observational studies, and another unaddressed

limit is missing data in covariates. Finally, Dong et al. [2018] proposed a stratified Win Ratio

approach, inspired by stratified odds ratio approaches [Cochran, 1954, Mantel and Haenszel,

1959]. Our approach and results in this paper tend towards recommending the use of as much

stratification as possible when dealing with Win Ratio and more generally comparison-based

estimators.

Formalization of hierarchical outcome analyses. All previous cited works above provide

guidances and recommendations based on empirical observations and trial examples. There

has been advances towards formalizing estimands for hierarchical comparisons and adapting
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these methods to observational data, based on Wilcoxon-Mann-Whitney testing [Wilcoxon,

1945, Mann and Whitney, 1947]. Mao [2017] formalized pairwise comparisons in a U´statistics

setting, and provide (augmented) inverse propensity weighting for estimating a population-level

estimand in observational studies. The estimand Mao [2017] introduced writes as the probability

that a given randomly selected treated individual fares better than (i.e. wins against) another

randomly selected controled individual, and is also studied by Chen et al. [2024], Yin et al.

[2022] for rank-sum-tests or more generally for learning with contrast functions [Guo and Ni,

2022]. This is a population-level estimand in the sense that it compares the distribution of

the outcome of two randomly selected patient. Several subsequent works then drew inspiration

from Mao [2017] to apply this in cancer studies [Chiaruttini et al., 2024] or refine the proposed

method in the presence of dependent subjects [Zhang et al., 2022] or clusters [Zhang and Jeong,

2021].

Causal effect measures to assess treatment effects. One of the key contribution of

our paper is to design an adequate estimand for pairwise comparisons, that Win Ratio and

Generalized Pairwise Comparisons methologies seek at approaching. The causal estimand we

define is derived from a new causal measure. A causal measure is a functional of the joint

distribution of the potential outcomes, and can vary from the Average Treatment Effect (ATE)

with the Risk Difference (RD) to the Risk Ratio, the Odds Ratio, etc. Reporting results using

different causal measures may lead to different conclusions or interpretations, and choosing the

right is never straightforward [Colnet et al., 2024]. Previous estimands related to the Win Ratio

consist of an individual-level estimand that cannot be estimated due to non-identifiability issues,

and of a population-level estimand that is identifiable, but that compares the distribution of

the treated population, with the distribution of the control population [Mao, 2017, Guo and

Ni, 2022]. See Fay and Li [2024] for an extended discussion on individual and population-level
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estimands and causal measures, and Gao et al. [2024] for approaches to handle non-identifiable

causal estimands. The estimand we introduce lies in-between the two previously cited estimands:

it is individual-level and identifiable. As opposed to some causal measures like the risk-ratio

that are not directly collapsible [Fay and Li, 2024, Groenwold et al., 2011, Didelez and Stensrud,

2021] where taking the population-level estimand (E rYip1qs {E rYip0qs instead of E rYip1q{Yip0qs

for the risk ratio) makes sense and can be interpreted in terms of treatment recommendations

(E rYip1qs {E rYip0qs “ 2 means that treating everyone leads to an averaged outcome twice larger

compared to treating no one), in comparison-based estimands this is not the case, as will be

highlighted in our paper. As such, one must be very careful at what one is estimating, and

defining the true quantity of interest becomes even more important.

Finally, another example of application of our framework beyond hierarchical outcomes

analysis is causal inference on distribution functions [Lin et al., 2023]. If outcomes are general

objects in a metric space (for instance, histograms), a contrast function wpy, y1q “ dpy, y1q can

be used. The metric can for instance be the Wasserstein metric if we work with continuous

histogram), quantifying how much two outcomes y and y1 are different. Here, the intuitive

population-level causal measure would be to compute ȳ1, ȳ0 the Wasserstein barycenters of

outcomes in respectively treated and control groups. Our framework enables to go beyond such

population-level estimands, while keeping identification possible.

2 Causal inference framework

2.1 Definitions and assumptions

We classically assume that we have access to n independent and identically distributed

(i.i.d.) patients. Each patient i P rns is characterized by his features vector Xi, that lies in some

feature space X , a treatment assignment Ti P t0, 1u, and an observed response (or outcome)
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Yi P Y . Y is the outcome set, and outcomes might be multivariate (for instance, Y Ă Rd with

d ě 2). Ti “ 0 and Ti “ 1 respectively correspond to patient i being in the control group (non-

treated) or in the test group (treated). Equivalently, the control and test groups can be replaced

by two different treatment options. We use the potential outcome framework [Splawa-Neyman

et al., 1990], that formalizes the concept of an intervention by positing the existence of two

values Yip0q and Yip1q for the outcomes of interest, for the two situations where the patient has

been exposed to treatment or not. These values are called potential outcomes, and they lie in

some outcomes space Y . The following assumption, often stated as the Stable Unit Treatment

Values Assumption, is made throughout the paper, and states that the outcome is equal to the

potential outcome given treatment.

Assumption 1 (SUTVA). We have Yi “ YipTiq for all i P t1, . . . , nu.

We will also make the two following assumptions, often referred to as unconfoundedness

and overlap/positivity, respectively. Both these assumptions will be directly verified in the

randomized controlled trial setting (RCT setting, for which Ti KK Xi) that we will first consider

in Section 3. The observational setting considered after in Sections 4 and 4.2 will rely on

Assumptions 2 and 3.

Assumption 2 (Unconfoundedness). We have tYip0q, Yip1qu KK Ti|Xi.

Assumption 3 (Positivity). There exists η P p0, 1q such that for all x P X , we have

η ď πpxq ď 1 ´ η ,

where πpxq “ P pTi “ 1|Xi “ xq is the probability of being treated given Xi “ x.

We want to know if a given patient would fare better under treatment than without it. In the

potential outcomes framework, there exists several causal measures to quantify this, amongst
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which the Risk Difference (RD) if Y Ă R, for which the Average Treatment Effect writes as:

τRD
def
“ E rYip1q ´ Yip0qs .

However, we would like to handle more general outcomes, and Section 2.3 defines more general

causal measures.

We introduce the “win” function on Y ˆ Y , that quantifies how a given outcome y P Y fares

when compared to another outcome y1 P Y . Our framework generalizes the lexicographic order

2 beyond the setting introduced by Pocock et al. [2011].

Definition 1 (Win function). Let

w : py, y1
q P Y2

ÞÑ wpy, y1
q P r0, 1s ,

be the win function, taking two outputs y, y1 to compare, and outputing a value between 0 and

1.

A typical example is:

wpy|y1
q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if y ą y1

1
2 if y „ y1

0 if y ă y1

, (1)

where ą is an order on Y , that we refer to as clinical order, and „ means that the outcomes

are similar or cannot be compared. If “ties” are discarded, the win function writes as:

wpy|y1
q “

$

’

’

&

’

’

%

1 if y ą y1

0 if y ĺ y1

, (2)

Pocock et al. [2011] first introduced the Win Ratio to handle composite endpoints in clinical

trials based on clinical priorities, without formalizing it using the potential outcomes framework.
2The lexicographic order is a total order on Rd, defined as y ą y1 if and only if inf tk P rds, yk ą y1

ku ă

inf tk P rds, yk ă y1
ku, with the convention that the infimum of an empty set is `8. In plain words, the lexico-

graphic order amounts to order vectors as words in the dictionary.
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In their example, outcomes Yi are of dimension 2 and potential outcomes Y1ptq, Y2ptq P RY t8u

would respectively correspond to the time after treatment (or non treatment) before an eventual

cardiovascular death event, and the time after (non-)treatment before an eventual heart-failure

hospitalization. Yiptq “ 8 means that no such event occurred. The win function here writes as:

wpy|y1q “ 1ty1ąy1
1u

` 1ty1“y1
1 , y2ąy1

2u
, i.e. wpy|y1q “ 1 if and only if y is strictly larger than y1 for

the lexicographic order. Note that in this example, ties are counted as losses, which may not

always be the case, as this may cause problems when ties should not be discarded nor treated

as losses, as pointed out by Ajufo et al. [2023].

Notations and terminology. For a sequence pZnqně0 of random variables with values in a

metric space pZ, dq and Z a random variable in Z, we say that Zn converges in probability

towards Z if for any ε ą 0 we have that P pdpZn, Zq ą εq Ñ 0. We say that a measurable event

E is almost sure if its probability is 1. We say that Zn converges almost surely towards some

value ℓ if the event tZn Ñ ℓu is almost sure. Zn is a consistent estimator of some quantity ℓ if

Zn converges in probability towards the constant random variable ℓ.

2.2 Traditional Win Ratio, Net-Benefit and Mann-Whitney-Wilcoxon

comparison estimators

Let Nt “ ti : Ti “ tu for t “ 0, 1 be respectively the control and treated groups. Below,

we formalize the estimators used by Pocock et al. [2011], Buyse [2010] for Win Ratio and

Generalized Comparisons. We refer to these estimators as traditional or historical Win Ratio

and Net-Benefit. Pocock et al. [2011], Buyse [2010] form pairs C Ă N1 ˆ N0 and define

nW
def
“

ÿ

py,y1qPC

wpy|y1
q , (3)
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as the number of wins and nL “ |C| ´ nW as the number of losses. The Win Proportion is

defined as:

p̂W
def
“

nW

nW ` nL
, (4)

and the Win Ratio [Pocock et al., 2011] is then defined as:

R̂WR
def
“

p̂W

1 ´ p̂W
“

nW

nL
. (5)

Another related quantity is the Net Benefit [Buyse, 2010]:

∆̂NB
def
“ 2p̂W ´ 1 “

nW ´ nL

nW ` nL
. (6)

Computing p̂W leads to values for both R̂WR and ∆̂NB. Based on R̂WR, ∆̂NB or p̂W, the treatment

T “ 1 can be judged favorable compared to non-treatment (or equivalently, to the treatment

option corresponding to T “ 0) if

p̂W ą
1
2 ,

which is equivalent to R̂WR ą 1 or ∆̂NB ą 0. Uncertainties and variance needs however to be

taken into account to rule out a treatment option for another.

The choice of the set of pairs C Ă N0 ˆ N1 of control and test individuals used to compute

the number of wins in Equation (3) has a crucial impact on the quantity being computed. The

pair set C might vary from the two natural following extremes:

1. Complete pairings, for which we have:

CTot
def
“ N0 ˆ N1 .

Complete pairings are the prevalent strategy in Win Ratio or Generalized Pairwise Com-

parisons analyses.

2. Nearest-neighor pairings, for which

CNN
def
“ tpi, σ‹

piqq | i P N0u ,
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where σ‹piq : N0 Ñ N1 matches i P N0 to the treated individual j P N1 that has

closest features in X i.e., σ‹piq P argminjPN1 }Xi ´ Xj}
2. CNN can also be generalized to

k´Nearest Neighbors.

Handling mixed factor and numerical features. For continuous features, Nearest Neigh-

bors can be naturally applied after an eventual reweighting of the different features, to prevent

from scale effects. For categorical features, Nearest Neighbors can be applied with one-hot

encodings for instance, leading to Hamming-distances. In the presence of different categori-

cal features of different importance, these can be weighted according to their importance. In

the CRASH-3 dataset that we study in Section 6, we handle mixed categorical and numerical

features in two different ways. The first one is to consider the Mahalanobis distance, that nat-

urally balances variabilities and scale of the different features. The second approach, that we

believe to be even more robust and significant, uses a Factor Analysis of Mixed Data (FAMD).

Since nearest neighbors algorithm relies on distance metrics (like Euclidean or Manahalahobis

distances), it struggles with mixed data types. FAMD transforms both numerical and cate-

gorical variables into a common latent space, ensuring a more meaningful distance calculation.

Furthermore, nearest neighbors algorithm suffers from high-dimensional data because distances

become less meaningful in higher dimensions. FAMD captures the most important variations in

fewer dimensions, improving NN’s effectiveness. This approached is detailed in Section 6 when

studying the CRASH-3 data.

As highlighted in Example 1, using different pairings leads to different Win Proportions (and

thus to different Win Ratios and Net Benefits), to the point where treatment recommendations

may even differ.

Example 1. Suppose that we have n “ 6 individuals with univariate and real outcomes (Y Ă

R). Assume that for i “ 1, 2, 3, 4, individuals are men (for which Xi “ 0) and we have Yip1q “

16



y1 ą y0 “ Yip0q while for i “ 5, 6 individuals are women (for which Xi “ 1) and we have

Yip1q “ y1 ă y0 “ Yip0q, and that for i P t1, . . . , 6u we have Ti “ 1 if i is an odd number.

Assume then that y1
0 ą y1 ą y0 ą y1

1. Then, we have:

p̂W “

$

’

’

&

’

’

%

2
3 if C “ CNN

4
9 if C “ CTot

,

leading to p̂W ą 1{2 or p̂W ă 1{2 and thus to different treatment decisions depending on the

coupling pairs chosen. Here, treatment favors 4 out of the 6 patients, while no-treatment only

favors 2 out of the 6: complete pairings thus favors the treatment option that benefits to only

a minority of patients. This is further illustrated in Figure 1 in the setting of Example 1, with

n{3 women and 2n{3 men, in a RCT setting with treatment probability of 1{2.

2.3 From estimators to causal measures and estimands

The quantities introduced so far — p̂W, R̂WR, ∆̂NB —, are data-dependent estimators (hence

the ˆ̈ notation). To efficiently capture treatment effects and treatment comparisons, we need

to first answer the following crucial question: what is the estimand that these estimators seek

at estimating ? In this subsection, we review the two causal estimands previously defined

and studied for generalized comparisons and Win Ratio analyses, before introducing our new

estimand. The first estimand is a natural individual-level estimand, but cannot be estimated as

it is not identifiable. Most works therefore introduced a population-level estimand, as a proxy

for the non-identifiable individual-level causal estimand. This causal estimand may however not

capture treatment effects correctly, hence our new causal estimand that is both individual-level

and identifiable.

A natural but non-identifiable causal estimand. In our causal inference framework, we

wish to determine if individuals would fare better if treated or non-treated. Here, w is a contrast
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function that compares two outcomes y, y1 P Y : wpy|y1q quantifies the relative favorability of y

compared to y1. If we worked with the Risk Difference, we would have wpy|y1q “ y ´ y1, and

the ATE would write τATE “ E rwpYip1q|Yip0qqs “ E rYip1q ´ Yip0qs. In the general case, with

general contrast functions (our “win” function), this leads to consider the following quantity:

τindiv
def
“ E rwpYip1q|Yip0qqs . (7)

The quantity τindiv is a causal effect measure (or causal measure, for short) and a causal estimand,

that compares the two potential outcomes of a given individual using the contrats/win function

w. If w is as in Equation (1), we have:

τindiv “ P pYip1q ą Yip0qq `
1
2P pYip1q „ Yip0qq ,

while if w is as in Equation (2), we have:

τindiv “ P pYip1q ą Yip0qq .

However, as highlighted by several works [Mao, 2017, Guo and Ni, 2022, Chen et al., 2024, Yin

et al., 2022, Zhang et al., 2022, Chiaruttini et al., 2024], this causal measure is non-identifiable

since estimating it in general requires the knowledge of the joint distribution of the potential

outcomes, which is never observed 3. τindiv is indeed an individual-level causal estimand [Fay

and Li, 2024], as it is directly a function of the joint probability distribution PptYip0q, Yip1quq, as

opposed to population-level causal estimands that are functions of tPpYip0qq, PpYip1qqu. What

makes it possible to estimate E rwpYip1q|Yip0qqs with the Risk Difference is the fact that thanks
3If Yip0q, Yip1q „ Bernoullip1{2q, the ATE with the risk difference E rYip1q ´ Yip0qs is identifiable (via

e.g. taking the mean on test and control groups, in a RCT setting) and equal to 0, while the ATE with

wpy|y1q “ 1tYip1qąYip0qu writes as P pYip1q ą Yip0qq is not identifiable. Indeed, in that latter case, coupling

pYip1q, Yip0qq as Yip1q “ Yip0q gives P pYip1q ą Yip0qq “ 0, while taking independent potential outcomes leads to

P pYip1q ą Yip0qq “ 1
4 . Since the distribution of the observations pXi, Ti, Yiq does not change by taking either

coupling but the value of E rwpYip1q|Yip0qqs changes, we can say that we have non-identifiability.
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to the linearity of the contrast function w, E rwpYip1q|Yip0qqs is both a population and an

individual-level causal measure.

A population-level causal estimand. To circumvent this non-identifiability issue of individual-

level causal measures, Mao [2017], Guo and Ni [2022], Chen et al. [2024], Yin et al. [2022], Zhang

et al. [2022], Chiaruttini et al. [2024] consider a population-level causal measure τpop instead of

the indivual-level one that defines τindiv. Their causal measure writes as:

τpop
def
“ E rwpYip1q|Yjp0qqs , (8)

where i and j are two different and independent individuals. Considering two independent

individuals leads to a different measure, that can now be estimated. We will show in Theorem 1

that with total pairings, p̂W in Equation (9) is a consistent estimator of τpop.

Our individual-level and identifiable causal estimand. Using τpop leads to comparing

individuals that may not be comparable, hence the following causal measure we introduce. It

is an identifiable relaxation of τindiv, defined by comparing patient i with features Xi to an

independent copy that has the same features. τ‹ is an individual-level causal estimand.

Definition 2. For x P X , let
␣

Y pxqp0q, Y pxqp1q
(

be an independent copy of tYip0q, Yip1qu|Xi “ x.

Let

τ‹pxq
def
“ E

“

wpY pxq
p1q|Yip0qq|Xi “ x

‰

,

and define

τ‹

def
“ E

“

wpY pXiq
p1q|Yip0qq

‰

. (9)

The quantities defined τ‹pxq and τ‹ are respectively a conditional effect measure and a causal

effect measure [Pearl, 2009]. By construction, the causal measure built satisfies direct collapsi-

bility [Colnet et al., 2024, Definition 4] and is logic-respecting [Colnet et al., 2024, Definition 6].
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We will show in Theorem 1 that the causal estimand τ‹ is identifiable as opposed to τindiv, since

for C “ CNN the estimator p̂W (Equation (4)) is consistent for τ‹.

Remark 1. Under additional assumptions such as potential independence (i.e., Yip1q KK Yip0q | Xi),

we have that τ‹ “ τindiv. This assumption of potential independence is however quite strong and

may be considered unlikely to hold true. It means that all that accounts for treatment effects

is included in Xi, precluding e.g. any unmeasured factor. Some examples (such as for instance

comparing 2 different doses of a same treatment) make it impossible to assume conditional

independence in general, hence the appeal of τ‹, since Definition 2 does not need to make any

assumption for τ‹ to be well-defined.

We now define the statistical estimands related to our causal measures and to our causal

estimands. Recall that statistical estimands are functions of measurable quantities; as such,

they cannot make appear counterfactual quantities such as potential outcomes, which is not the

case for causal measures and causal estimands. For instance, the statistical estimand related to

the causal estimand τRD is E rYi|Ti “ 1s´E rYi|Ti “ 1s. For the population-level causal measure

τpop, the related statistical estimand writes as:

E rwpYi|Yjq|Ti “ 1, Tj “ 0s ,

while the statistical estimand related to τ‹ writes as

E
“

wpY pXiq
p1q, Yiq|Ti “ 0

‰

,

or, equivalently:

E
“

wpYi, Y pXiq
p0qq|Ti “ 1

‰

.

Under Assumption 1 (SUTVA), we have that these statistical estimands are equal to their

associated causal estimands.
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From the estimands τ “ τ‹ or τ “ τpop, the Win Ratio estimand related to the estimator

R̂WR defined in Equation (5) writes as:

RWR
def
“

τ

1 ´ τ
,

while the Net Benefit estimand related to the estimator ∆̂NB defined in Equation (6) writes as:

∆NB
def
“ 2τ ´ 1 .

Remark 2. Having estimators and confidence intervals for estimating τ with some estimator τ̂ is

equivalent to having estimates and confidence intervals for RWR or NNB for estimators ∆̂ “ 2τ̂´1

and R̂ “ τ̂
1´τ̂

. Indeed, if we have a confidence interval of the form P pτ̂ P rτ ´ ε1, τ ` ε2sq ě 1´α,

we also have P
´

∆̂ P r∆NB ´ 2ε1, ∆NB ` 2ε2s

¯

ě 1 ´ α and P
´

R̂ P rRWR ´ ε1
1, RWR ´ ε1

2s

¯

ě

1 ´ α, where ε1
1 “ τ

1´τ
´ τ´ε1

1`ε1´τ
and ε2 “ τ`ε2

1´ε2´τ
´ τ

1´τ
if 0 ă τ ´ ε1 and τ ` ε2 ă 1.

Remark 3 (On the well-posedness of Definition 2). Let pE, Eq and pF, Fq be two probability

spaces. ν : E ˆ F Ñ r0, 1s is a transition kernel if it satisfies @x P E , νpx, ¨q is a probability

measure on pF, Fq and @B P F , νp¨, Bq is E´measurable. If X P Rp and Y P Rd, the conditinal

law of Y given X is a kernel ν on pRd ˆ BpRpqq that satisfies:

PpX,Y q “ PX¨ν , i.e. @pA, Bq P BpRp
q ˆ BpRd

q , P pX P A, Y P Bq “

ż

xPA

νpx, BqPXpdxq .

Such a transition kernel always exists: this is Miloslav Jiřina’s Theorem [Jiřina, 1959] for Bore-

lian measures and random variables. We write

P pY P B|X “ xq
def
“ νpx, Bq .

To build two independent copies of Y given X “ x, we thus draw Yx, Y 1
x with:

@pB, B1
q P BpRd

q
2 , P pYx P B , Y 1

x P B1
q “ νpx, Bqνpx, B1

q .
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We thus have created a copy of Y that satisfies the two following properties: (i) it is independent

of Y conditionally on X; (ii) conditionally on X, the distributions of Y 1 and Y are the same.

Their joint distribution with X writes as:

P
`

X P A , Y P B , Y pXq
P B1

˘

“ P pX P AqE rνpX, BqνpX, B1
q|X P As ,

for all pA, B, B1q P BpRpq ˆ BpRdq2.

Example 2 below is the estimand-wise version of Example 1. It shows that the causal mea-

sures τ‹ and τpop are not equivalent and may lead to different treatment recommendations if

populations are heterogeneous. In particular, Example 2 justifies our preference and recommen-

dations towards using τ‹ over τpop.

Example 2. Assume that outcomes are univariate (Yip0q, Yip1q P R), and that X “ X1 Y X2

with P pXi P X1q “ 1 ´ α, P pXi P X2q “ α such that:

Yip1q “ y1 ą y0 “ Yip0q|Xi P X1 , Yip1q “ y1
1 ă y1

0 “ Yip0q|Xi P X2 ,

almost surely. We then have, if y1
0 ą y1 ą y0 ą y1

1:

E
“

wpY pXiq
p1q|Yip0qq

‰

“ 1 ´ α , E rwpYip1q|Yjp0qqs “ p1 ´ αq
2 .

Thus, if 1
2 ą α ą 1 ´ 1?

2 , we have:

E
“

wpY pXiq
p1q|Yip0qq

‰

ą
1
2 ą E rwpYip1q|Yjp0qqs ,

leading to different conclusions in terms of treatment efficacy (see Figure 1).

We highlight the fact that the phenomenon appearing in Example 2 is not reminiscent of

Simpson’s paradox [Simpson, 1951, Wagner, 1982], as understood in the popular sense. Simp-

son’s paradox states a trend might appear in all subgroups of a population, but still reverse

when considering the average over all population. Here, the paradox in Example 2 is of a very
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different nature, since in both cases the average over the whole population is considered. The

difference lies in the way the average is taken: different causal measures might lead to differ-

ent treatment effects. Taking the average of individual effects over the global population (as

done when considering τ‹) or comparing the whole treated group distribution with the control

distribution (as done when considering τpop) can lead to opposite trends.

Similarly to τpop, τ‹ it serves as a computable proxy to approximate the ideal value τindiv

that cannot be approximated in general. We however argue that, thanks to simple examples

such as the one just above, τ‹ is a better proxy than τpop, since it captures more information.

This is intuitively the case: both pY pXiqp1q, Yip0qq and pYjp1q, Yip0qq are couplings of the random

variables Yip1q and Yip0q. The coupling pY pXiqp1q, Yip0qq is however naturally closer to the

coupling pYip1q, Yip0qq than the coupling pYjp1q, Yip0qq, since pY pXiqp1q, Yip0qq takes into account

covariate effects, leading to:

dℓ2
`

pY pXiq
p1q, Yip0qq , pYip1q, Yip0qq

˘

ď dℓ2
`

pYjp1q, Yip0qq , pYip1q, Yip0qq
˘

,

if the marginals are absolutely continuous with respect to the Lebesgue measure, and where dℓ2

is the ℓ2 distance between densities. Finally, next proposition formalizes the excess risk when

using τ‹ or τpop as proxis for τindiv.

Proposition 1. We have:

|τ‹ ´ τindiv| ď dTVpPY pXiqp1q,Yip0q, PYip1q,Yip0qq ,

and

|τpop ´ τindiv| ď dTVpPYjp1q,Yip0q, PYip1q,Yip0qq ,

where PY pXiqp1q,Yip0q, PYip1q,Yip0q, PYjp1q,Yip0q are respectively the joint distributions of pY pXiqp1q, Yip0qq,

pYip1q, Yip0qq and pYip1q, Yjp0qq, and dTV is the total-variation distance between distributions.

Furthermore, if the win function w is 1´Lipschitz, we have that:

|τ‹ ´ τindiv| ď W1pPY pXiqp1q,Yip0q, PYip1q,Yip0qq ,
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and

|τpop ´ τindiv| ď W1pPYjp1q,Yip0q, PYip1q,Yip0qq ,

where W1 is the 1´Wasserstein distance between distributions.

3 Consistency of traditional Win Ratio, Net-Benefit and

Win Proportions in the RCT setting

In this section, we study p̂W in light of the causal measures we previously defined. The

quantity p̂W is the Win Proportion (Equation (4)), that is used to compute R̂WR and ∆̂NB,

referred to as traditional Win Ratio and Net-Benefit estimators. As expected from Examples 1

and 2, the behavior of p̂W crucially depends on the pairings considered. The following theorem

shows that, in a Randomized Controlled Trial (RCT) setting, the Win Proportion is the most

natural estimator for the estimands τ “ τ‹ and τ “ τpop. Indeed, for a Nearest Neighbor pairing

choice, the Win Proportion is a consistent estimator of τ‹, while for a complete pairing choice

the Win Proportion is a consistent estimator of τpop.

Theorem 1 (Consistency of Win Ratio). Let

p̂
pn0,n1,Cq

W
def
“

1
|C|

ÿ

pi,jqPC

wpYj|Yiq ,

for C Ă N0 ˆ N1. Assume that Assumptions 1 to 3 hold, and assume further that we are in the

RCT setting: Ti KK Xi.

1. Complete pairing. We have:

p̂
pn0,n1,CTotq

W ÝÑ
P

τpop
def
“ E rwpYip1q|Yjp0qqs , i ‰ j ,

where the limit in probability is taken as n0, n1 Ñ 8 and CTot “ N0 ˆ N1.
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2. Nearest Neighbor. Assume that px, yq ÞÑ E rwpYip1q|yq|Xi “ xs is continuous in its first

variable x and that X is compact. Then, let σ‹ : N0 Ñ N1 be defined as:

@i P N1 , σ‹
piq P argminjPN1 }Xi ´ Xj} ,

where if there are two possible choices or more for σ‹piq, we choose uniformly at random.

Let CNN “ tpi, σ‹piqq, i P N0u. We have:

p̂
pn0,n1,CNNq

W ÝÑ
P

τ‹

def
“ E

“

E
“

wpY pXiq
p1q|Yip0qq|Xi

‰‰

,

where the limit in probability is taken as n0, n1 Ñ 8.

The consistency results of Theorem 1 formalize the intuition brought by Examples 1 and 2

and illustrated in Figure 1. The choice of pairing C is crucial, and leads to the estimation of

very different quantities. For complete pairings CTot, the causal estimand that is estimated is

the population-level one, τpop. For Nearest Neighbor pairings CNN, the causal estimand that is

estimated is the individual-level one that we introduced, τ‹, defined in Definition 2. As high-

lighted in Examples 1 and 2 and in Figure 1, complete pairings and the population-level causal

estimand have undesired behaviors and may even lead to different treatment recommendations.

When the features Xi are expressive enough, this fallacy of τpop and of complete pairings is

solved by considering our causal measure τ‹ and Nearest Neighbor pairings instead.

However, it is worth mentioning that, while τ‹ seems like the causal estimand one would

seek at approaching, using Nearest Neighbor pairings to approach τ‹ has some downsides too.

The first weakness of this approach is the fact that it is restricted to the RCT setting: the

consistency result above in Theorem 1.2 crucially relies on Ti being independent of Xi. A

first direction will thus be to relax the RCT setting to an observational one: this is what we

do in Section 4, where we combine an Inverse Propensity Weighting approach with Nearest

Neighbor pairings. Then, the second weakness of this Nearest Neighbor approach is that it
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suffers from the curse of high dimensions: if the convergence speed in terms of samples n

required will drop exponentially as the dimension of the features Xi increases. This is a known

weakness of Nearest Neighbors approach in general [Biau and Devroye, 2015]. Although they

are one the most studied non-parametric learning methods for which theoretical results can be

derived, Nearest Neighbors suffer from the fact that in high dimensions, points are likely to be

separated if n is not exponentially large in the dimension. This motivates our aim for a more

general and systemic method to estimate our causal estimand τ‹: in Section 4.2, we provide

a distributional regression point of view on the problem and develop new methodologies for

efficiently estimating τ‹. This new approach also has the benefit of being able to handle missing

values in the covariates, unlike Nearest Neighbors approaches.

Finally, we conclude this section with Remark 4: forming risk strata may be an interesting

strategy, that lies in-between the two extreme choices CTot and CNN for pairing sets. The causal

estimand related to a strata function can also be defined, and we expect results similar to those

of Theorem 1 to hold. We argue that the individual-level causal estimand τ‹ can in fact be

recovered using infinitesimal stratas, further justifying the strength of Definition 2.

Remark 4 (Win Ratio and comparisons with strata). The following notion of strata could be

developed further, as an in-between the extreme cases presented in Theorem 1. Let r : X Ñ R be

a risk strata function, on some metric space pR, dq. Patients with similar risks (dprpXiq, rpXjqq

small) are expected to have similar control and treated behaviors. Using this strata, several

studies build the following pairs of treated and control patients:

Cr̂,ε
def
“ tpi, jq P N0 ˆ N1 | dprpXiq, rpXjqq ď εu ,

to obtain the estimator p̂W (Equation (4)) using these pairs. Now, define the ε´strata causal

estimand as:

τ r,ε
‹

def
“ P pYip1q ą Yjp0q|dprpXiq, rpXjqq ď εq ,
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where i and j are two different and independent indices. Under adequate, if C “ Cr̂,ε we expect

to have that:

p̂W ÝÑ
P

τ r,ε
‹ .

Furthermore, our causal measure τ‹ can in fact be seen as the limit of τ r,ε
‹ for ε Ñ 0. However,

this limit may not always be well-defined, hence the strength of Definition 2.

4 Observational setting

In this section, we introduce new methods to approximate τ‹ beyond the RCT setting pre-

viously considered. In Section 4.1, we generalize the Nearest Neighbor pairing approach using

Inverse Propensity Weights (IPW), to account for non-constant probability of treatment. Then,

to address both missing values issues in the covariates (that can hardly be handled by Nearest

Neighbors) and the slow convergence in large dimensions, we propose a Distributional Regres-

sion approach in Section 4.2, with a direct regression estimator, and a doubly-robust estimator,

that both leverage recent advances in distributional regression (Distributional Random Forests,

Cevid et al. [2022]).

4.1 An Inverse Propensity Weighting approach

We here generalize the traditional estimator p̂W with Nearest Neighbors (Theorem 1), that

we used to compute Win Ratios and Net-Benefit in the previous section, to the observational

setting in order to estimate τ‹ beyond randomized controlled trials. We will use approximated

propensity scores. Recall that for x P X , πpxq is the probability of being treated, conditionally

on Xi “ x (as defined in Assumption 3):

@x P X , πpxq
def
“ P pTi “ 1|Xi “ xq ,
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and

1 ´ πpxq
def
“ P pTi “ 0|Xi “ xq .

πpXiq is then called the propensity score of patient i. In this section, we assume that we have

access to approximated propensity scores, via π̂ an approximation of π.

We assume that π̂ is independent from the samples pXi, Ti, YiqiPrns: it has been computed

using independent samples, via for instance a sample splitting approach. Note that this in-

dependence assumption could be removed using cross-fitting techniques, as for instance done

in Athey and Wager [2021]. In the observational setting, we only assume that Assumption 2

holds (uncounfoundedness), instead of assuming that Ti KK Xi. Thus, estimators used in RCTs

might be biased when used on observational data due to counfounders between treatment and

outcomes. To unbias RCT estimates, one thus resorts to Inverse Propensity Weighting (IPW)

[Robins et al., 1994, Horvitz and Thompson, 1952], as classically done for instance estimating

the Average Treatment Effect with the Risk Difference in observational settings.

We thus adapt the Nearest Neighbor estimator (that is a consistent estimator for τ‹ in the

RCT setting), defined as:
1
n0

ÿ

iPN0

wpYσ‹
1piq|Yiq , (10)

and used in Theorem 1.2, where

@i P N1 , σ‹
1piq P argminjPN1 }Xi ´ Xj} ,

with uniform sampling if there are equalities. We replace this estimator by:

τ̂IPW
def
“

1
n

ÿ

iPN0

wpYσ‹
1piq|Yiqp1 ´ π̂pXiqq

´1 . (11)

Note that in the context of a RCT, propensities are known and are constant (for all x P X ,

πpxq “ π), and that n0{n is an unbiased and consistent estimate of π. As such, Equation (10) is

simply a specific case of Equation (11). We next show that τ̂IPW is indeed a generalization of pW

with CNN to observational data, since it is a consistent estimator of the same causal estimand.

28



Theorem 2. Assume that Assumptions 1 to 3 hold. Assume that π̂ satisfies:

1. Pointwise consistency almost surely: @x P X , we have P pπ̂pxq Ñ πpxqq “ 1;

2. Mean consistency: E r|π̂pXiq ´ πpXiq|s Ñ 0;

3. Finite and bounded second moment of propensity scores:

lim supE
„

1
p1 ´ π̂pXiqq2

ȷ

and lim supE
„

1
π̂pXiq

2

ȷ

ă 8 .

Assume finally that px, yq ÞÑ E rwpYip1q|yq|Xi “ xs is continuous in its first variable x and that

X is compact. Then, τ̂IPW (Equation (11)) is a consistent estimator of τ‹ (Definition 2):

1
n

ÿ

iPN0

wpYσ‹
1piq|Yiqp1 ´ π̂pXiqq

´1
ÝÑ
P

τ‹ ,

as n0, n1 Ñ 8.

As opposed to the inverse propensity weighting estimators provided by Mao [2017] and by

many subsequent works [Chen et al., 2024, Chiaruttini et al., 2024, Guo and Ni, 2022, Yin et al.,

2022, Zhang et al., 2022], our estimator τ̂IPW is consistent for τ‹ rather than for τpop.

4.2 Distributional Regression Approach

We now introduce a distributional regression approach for estimating τ‹, to address the

fact that the Nearest Neighbor approach cannot handle missing values in the covariates and

may suffer from slow convergence if the dimension is too large. Our distributional regression

approach is the counterpart of the Two-learners or Plug-in G-formula approaches, used for

(C)ATE estimation with the risk difference. When estimating

τRD “ E rYi|Ti “ 1s ´ E rYi|Ti “ 0s ,
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with a regression approach, the idea is to learn two (non)parametric estimates µ̂t : X Ñ R of

µt : x ÞÑ E rYi|Ti “ t, Xi “ xs, to approximate τRD with:

1
n

n
ÿ

i“1
µ̂1pXiq ´ µ̂0pXiq .

A naive adaptation of this regression approach to our problem of estimating τ‹ would thus be

to first learn x ÞÑ µ̂tpxq (non)parametric estimates of µt : x ÞÑ E rYi|Xi “ x, Ti “ ts as before.

Then, let p̂pXiq “ wpŷ1pXiq|ŷ0pXiqq, that aims at estimating E rwpYip1q|Yip0qq|Xis, to obtain the

estimator 1
n

řn
i“1 p̂pXiq. However, as opposed to (C)ATE estimation, we don’t have linearity of

w here, so that even if the conditional expectations are perfectly estimated (µ̂t “ µt), we won’t

even have consistency. Regressing the conditional expectations makes us loose information on

the way.

Hence the distributional regression approach, since we need to go beyond learning condi-

tional expectations. First, notice that we have, using the independence between Y pXiq and Yi

conditionally on Xi:

E
“

wpY pXiq
p1q|Yip0qq|Xi

‰

“

ż

Y
E rwpYip1q|yq|Xis dP pYip0q “ y|Xiq ,

and equivalently:

E
“

wpY pXiq
p1q|Yip0qq|Xi

‰

“

ż

Y
E rwpy|Yip0qq|Xis dP pYip1q “ y|Xiq .

Define:

qt : px, yq P X ˆ Y ÞÑ E rwptYiptq ` p1 ´ tqy|ty ` p1 ´ tqYiptqq|Xi “ xs ,

so that

q1pxq “ E rwpYip1q|yq|Xi “ xs ,

and

q0pxq “ E rwpy|Yip0qq|Xi “ xs .
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Thus, if we learn a (non)parametric estimate q̂t of qt for t P t0, 1u, we have a candidate estimator

for τ‹ if we are able to sample from dPpYiptq|Xiq

In the RCT setting, noting π “ P pTi “ 1q, two candidate estimators would be:

Ŝt “
1
n

ÿ

iPrns

"

tq̂1pXi, Yiq
1 ´ Ti

1 ´ π
` p1 ´ tqq̂0pXi, Yiq

Ti

π

*

,

for t P t0, 1u. Both Ŝ0 and Ŝ1 are unbiased estimators of τ‹ if we have q̂t “ qt (perfect estimation).

In the observational setting, this can be generalized to, using IPW weights:

Ŝ1 “
1
n

n
ÿ

i“1
q̂1pXi, Yiq

1 ´ Ti

1 ´ π̂pXiq
, or Ŝ0 “

1
2n

n
ÿ

i“1
q̂0pXi, Yiq

Ti

π̂pXiq
,

where π̂ are propensity scores estimated on an independent dataset. Indeed, we then have if

the exact propensity scores are known (π̂ “ π):

E
„

q̂pXi, Yiq
1 ´ Ti

1 ´ πpXiq

ȷ

“ E rE rq̂pXi, Yiq | Xi, Ti “ 0ss

“ E
„
ż

q̂ipXi, yq dP pYip0q “ y | Xiq

ȷ

.

If the exact conditional expectations are known (i.e., if q̂t “ qt), the above expression is then

equal to τ‹. This approach suffers from both the nuisance factors of the estimated propensity

scores π̂ and of the distributional regressions q̂t. It however appears that we can go beyond this

dependency on propensity scores, by carefully combining distributional regressions performed on

control and test groups. The approach we introduce next only relies on distributional regression,

and is as such closer to more traditional regression approaches such as the Two learner or Plug-in

G-formula methods.

4.2.1 The direct distributional regression estimator

Let:

τ̂reg
def
“

1
n

n
ÿ

i“1
p1 ´ Tiqq̂1pXi, Yiq ` Tiq̂0pXi, Yiq , (12)
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be the distributional regression estimator. We have the following first result, that justifies the

use of τ̂reg. If distributional regression is perfect (no estimation error, i.e. q̂t “ qt), then τ̂reg is

an unbiased estimator of τ‹.

Proposition 2. Assume that Assumptions 1 and 2 hold (SUTVA and unconfoundedness) and

that q̂t “ qt for t P t0, 1u. Then, τ̂reg is an unbiased estimator of τ‹.

Proof. If there’s no error in estimation and using unconfoundedness:

E rp1 ´ Tiqq̂1pXi, Yiq ` Tiq̂0pXi, Yiqs

“ E
“

P pTi “ 0|XiqE
“

wpY pXiq
p1q|Yiq|Xi, Yi, Ti “ 0

‰‰

` E
“

P pTi “ 1|XiqE
“

wpYi|Y
pXiq

p0qq|Xi, Yi, Ti “ 1
‰‰

“ E
“

p1 ´ πpXiqqE
“

wpY pXiq
p1q|Yip0qq|Xi

‰

` πpXiqE
“

wpYip1q|Y pXiq
p0qq|Xi

‰‰

“ P
`

Y pXiq
p1q ě Yip0q

˘

,

using that conditionally on Xi, the random variables pYip0q, Yip1qq and pY pXiqp0q, Y pXiqp1qq are

independent and identically distributed.

Moving beyond simple unbiasedness, provided that the estimation errors tend to zero (in

mean over the population), we prove in the next Theorem that we have consistency of τ̂reg, and

even asymptotic normality if the estimation error is sufficiently small.

Theorem 3 (Consistency and asymptotic normality). Assume that Assumptions 1 to 3 hold.

We have the followings.

1. Assume that for t P t0, 1u, we have:

E
“

|q̂tpXi, Yiq ´ qtpXi, Yiq|
ˇ

ˇTi “ 1 ´ t
‰

Ñ 0 .

Then, the estimator τ̂reg defined in Equation (12) converges almost surely to τ‹ (defined

in Definition 2).
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2. Assume that for t P t0, 1u, we have:

E
“

|q̂tpXi, Yiq ´ qtpXi, Yiq|
ˇ

ˇTi “ 1 ´ t
‰

“ o
`

n´1{2˘ .

Then, the estimator τ̂reg defined in Equation (12) satisfies:

?
n
`

τ̂reg ´ τ‹

˘

ÝÑ
P

N p0, σ2
8q ,

where

σ2
8 “ P pTi “ 1q var pE rwpYip1q, Yip0qq|Xi, Yip0q, Ti “ 1sq

` P pTi “ 0q var pE rwpYip1q, Yip0qq|Xi, Yip1q, Ti “ 0sq

is the variance of the probability of a win conditioned on covariates, treatment, and coun-

terfactual.

The assumption of Theorem 3.1 will hold, as long as the distributional regressors are consis-

tent. This will for instance be the case of Distributional Random Forests [Cevid et al., 2022] that

we use (defined and explained further in Section 4.2.3), under very mild assumptions. The as-

sumption of Theorem 3.2 is much stronger, and requires a fast parametric rate of convergence.

It will hold if for instance we perform logistic regression (Section 4.2.3) for a well-specified

distributional regression problem. Under such assumptions, the asymptotic normality yields

asymptotically valid confidence intervals.

4.2.2 The doubly robust estimator

We can finally build the following doubly robust estimator, that combines both the distri-

bution regression estimator τ̂reg (Equation (12)) and the inverse propensity weighting estimator

τ̂IPW (Equation (11)), by using distributional regression estimates q̂t and approximated propen-
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sity scores π̂:

τ̂AIPW
def
“

1
n

n
ÿ

i“1

"

p1 ´ Tiqq̂1pXi, Yiq ´ λpq̂1pXi, Yiq ´ wpYσ0piq|Yiqq
1 ´ Ti

p1 ´ π̂pXiqq

*

`
1
n

n
ÿ

i“1

"

Tiq̂0pXi, Yiq ´ p1 ´ λqpq̂0pXi, Yiq ´ wpYi|Yσ1piqqq
Ti

π̂pXiq

*

,

(13)

where λ P p0, 1q is a parameter independent of the n datasamples, σ0, σ1 are Nearest Neighbor

pairings on control and test groups, in the sense that

σ0 P argminσ:N0ÑN1

ÿ

i

›

›Xi ´ Xσpiq

›

›

2
,

and

σ1 P argminσ:N1ÑN0

ÿ

j

›

›Xj ´ Xσpjq

›

› ,

where in case of equality in the argmin, a uniform sampling over the minimizers is performed.

We have the following (weak) double robustness property for τAIPW: if either π̂ or both q̂t are

good estimators of the respective quantities they seek at estimating, then τ̂AIPW is a consistent

estimator of τ‹.

Theorem 4. Assume that either (i) the assumptions of Theorem 2 or (ii) η1 ď π̂ ď 1 ´ η1 a.s.,

and the assumptions of Theorem 3 holds. Assume that λ Ñ P pTi “ 0q almost surely. Then, we

have:

τ̂AIPW ÝÑ
P

τ‹ .

Classically, our augmented estimator combines both non-parametric estimators q̂t, that here

come from distribution regressions, and estimated propensity weights π̂. There is here however

an additional and less conventional parameter λ. The role of λ is to balance between treated and

control groups. Having λ that converges almost surely to P pTi “ 0q is a necessary assumption

for our doubly robust estimator to be a consistent estimator of τ‹. This assumption can easily

be imposed by setting λ “ 1
n1

řn1

j“1 1tT 1
j“0u for some independent samples

␣

pX 1
j, T 1

j , Y 1
j q, j P rn1s

(

,

obtained by randomly splitting our dataset.
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4.2.3 Distributional random forests and logistic regression for estimating q1px, yq

So far, we have not specified the methods used to perform distributional regression to learn

the (non)parametric estimates q̂t of qt. We describe in this section a non-parametric regression

approach using distributional random forests [Cevid et al., 2022, Bénard et al., 2024], and a

parametric approach using logistic regression.

Distributional random forests (DRF). Our goal is to estimate

q1px, yq “ P pwpYi|yq|Xi “ x, Ti “ 1q ,

with distributional random forests [Cevid et al., 2022, Bénard et al., 2024]. Let H a Hilbert space

with a kernel kp¨, ¨q defined on Y ˆY (usually the Gaussian kernel). For any probability measure

P on Y , let ϕpPq “ E rkpZ, ¨qs P H, for Z „ P. Distributional random forests approximate

µpx, tq “ ϕpPY |X“x,T “tq using splitting rules in the Hilbert space H, and as such are simply

generalization of vanilla random forests to Hilbert spaces. Then, Cevid et al. [2022] use the

fact that for kernels such as the Gaussian kernel, learning kernel representations amounts to

learning probability distributions. Thus, learning with samples pX1, Y1q, . . . , pXm, Ymq, µpx, tq

is approximated via µ̂mpx, tq that takes the form:

µ̂mpx, tq “

m
ÿ

i“1
ωipx, tqkpYi, ¨q P H ,

for weights ωip¨, ¨q learnt by the forest. The formula on the right hand side can be written as
řm

i“1 ωipx, tqkpYi, ¨q “ ϕ p
řm

i“1 wipx, tqδYi
q, where for y P Y , δy is a Dirac of mass 1 at point y.

The distribution PY |X“x,T “t is thus approximated by:

P̂pmq

Y |X“x,T “t “

m
ÿ

i“1
ωipx, tqδYi

.

Hence, the probability P pY P S|X “ x, T “ tq can be estimated by:

P̂pmq
pY P S|X “ x, T “ tq

def
“

m
ÿ

i“1
ωipx, tqδtYiPSu .
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More generally, any conditional expectation E rhpY q|X “ x, T “ ts for some measurable h :

Y Ñ R can be approximated by:

Êpmq
rhpY q|X “ x, T “ ts

def
“

n
ÿ

i“1
ωipx, tqhpYiq .

Now, we remark that the quantity that we wish to estimate writes as q1px, yq “ P phypYiq|Xi “ x, Ti “ 1q,

where hypYiq “ wpYi|yq. Thus, our estimate q̂1px, yq of q1px, yq “ P pwpYi|yq|Xi “ x, Ti “ 1q is:

q̂1px, yq
def
“

n
ÿ

i“1
ωipx, 1qwpYi|yq ,

while our estimate q̂0px, yq of q0px, yq “ P pwpy|Yiq|Xi “ x, Ti “ 0q is:

q̂0px, yq
def
“

n
ÿ

i“1
ωipx, 0qwpy|Yiq .

In practice, these steps are implemented in a very concise way, using the following pseudo code

to implement the distributional regression estimator (Equation (12)).

1. Dataset D “ tpXi, Ti, Yiq, i P rnsu is split between a train set Dtrain “ tpXi, Ti, Yiq, i P rmsu

and an inference set Dinference “ tpXi, Ti, Yiq, m ` 1 ď i ď nu.

2. A Distributional Random Forest (DRF) is trained on Dtrain to predict Yi from pXi, Tiq,

using the R package drf [2020], an implementation of DRFs as introduced by Cevid et al.

[2022].

3. Apply the DRF to predict on the inference set Dinference, to obtain the weights ωipXj, Tjq

for i a train point and j in the inference set.

4. Compute and output:

1
n ´ m

n
ÿ

j“m`1

m
ÿ

i“1

”

1tTj“0uωipXj, 0qwpYi|Yjq ` 1tTj“1uωipXj, 1qwpYj|Yiq

ı

.
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Logistic regression for outcomes Y “ t0, 1u
d. We now present a parametric approach to

estimate qt, t P t0, 1u, using linear logistic regression. This approach is here described in the

case of multivariate binary outcomes Y “ t0, 1u
d with the win function wpy|y1q “ 1tyąy1u, but

can be generalized to any categorical outcomes. The idea is to fit a generalized linear regression

model to learn x P X ÞÑ P pYi “ y|Xi “ x, Ti “ tq for y P Y “ t0, 1u
d and t P t0, 1u: this is a

multiclass classification problem. We parameterize our classifier using pu
ptq

k qkPrds where u
ptq

k P Rp

for k P rds and t P t0, 1u (for X Ă Rp), and learn a function of the form:

px, tq P X ˆ t0, 1u ÞÑ

d
ź

k“1
expitpxu

ptq

k , xyq ,

where expitpsq “ es

1`es for s P R. Interactions can then be imposed, by setting some constraints

on the u
ptq

k , such as u
ptq

k “ u
ptq

ℓ for all k, ℓ and fixed t, for full interactions. The weights are learnt

by minimizing an empirical loss of the form:

L
´!

u
ptq

k , k P rds, t P t0, 1u

)¯

def
“

1
m

m
ÿ

i“1

d
ÿ

k“1
log

´

expitp´2pYi ´ 1{2qxu
pTiq

k , Xiyq

¯

.

If this model is well-specified (in the sense that the data is indeed generated by Bernoulli random

variables of the form P pYi,kptq “ 1qq “ expitpxu
ptq,‹
k , Xiyq), we expect a fast parametric statistical

rate and the assumption of Theorem 3.2 to hold.

5 Experiments on randomly generated data

We first start with experiments on random synthetic data.

5.1 The impact of the dimension on data with correlated and non-

correlated outcomes

We generate synthetic observational data as follows. Inputs Xi and outputs Yi respectively

lie in Rp and t0, 1u
d. The win function on t0, 1u

d we then use is wpy, y1q “ 1tyąy1u, for ą the
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lexicographic order as in Pocock et al. [2011].

1. Covariates are generated as standard multivariate Gaussian random variables Xi „ N p0, Ipq.

2. Treatment assignments follow a Bernoulli law of mean σpxXi, vyq, where v P Rp is unitary

and σ : R Ñ r0, 1s.

3. Potential outcomes Yip0q, Yip1q P t0, 1u
d follow multidimensional Bernoulli laws of param-

eters xu
ptq

i , Xiy, i P rds for u
ptq

i P Rp:

P pYiptq “ pe1, . . . , edqq “

d
ź

i“1

´

eiσpxu
ptq

i , Xiyq ` p1 ´ eiqp1 ´ σpxu
ptq

i , Xiyqq

¯

,

for any pe1, . . . , edq P t0, 1u
d.

We then distinguish two scenarios in terms of outcomes: correlated and uncorrelated ones,

uncorrelated outcomes being harder for distributional regression (more parameters to learn).

1. The first one is when the different outcomes have very strong correlations: vectors pu
ptq

i qiPrds

are highly correlated. We model this using up0q, up1q two unitary vectors, and setting

u
ptq

i “ uptq for all i P rds. This is the correlated outcomes setting.

2. The second scenario is the uncorrelated outcomes setting, where we instead take u
ptq

i

as random unitary vectors: there is no correlation between the different multiple outcomes.

Figures 2 and 3 study the impact of the dimension (p, d increasing) in the correlated outcomes

setting, while Figures 4 and 5 study the impact of the dimension in the uncorrelated outcomes

setting. We also provide experiments where AIPW and IPW estimators use oracle propensity

weights (‘cheating’ estimators, as referred to in the plots), to show that the bias is due to the

dimension and nearest neighbors rather than propensities that are not well estimated. These

illustrate the shortcomings of the nearest neighbor approach when the dimension becomes larger,

and the strangth of our distributional regression approach.
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(c) d “ p “ 20

Figure 2: Testing for the impact of the dimension, correlated outcomes setting. Boxplots over

100 runs. DRF AIPW WR, DRF WR and NearestNeigh WR respectively correspond to the

AIPW method in Equation (13), the direct distributional approach in Equation (12) and the

weighted Nearest Neighbor approach in Equation (11). For the AIPW and distributional re-

gression approach, Distributional Random Forests (DRFs, Bénard et al. [2024]) are used to

perform distributional regression, using 1000 trees. For the weighted Nearest Neighbor and for

the AIPW approaches, probability forests (of the GRF package) are used to estimate propen-

sities, with 1000 trees. Propensity scores estimated with logistic regression gave comparable

results.
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(c) d “ p “ 20

Figure 3: Same setting as in Figure 2, with an added method: Nearest Neighbor with a ‘cheating’

option, that corresponds to exactly plugging in the propensity scores instead of estimating them.

Boxplots over 100 runs.
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Figure 4: Testing for the impact of the dimension, uncorrelated outcomes setting. Boxplots

over 100 runs. DRF AIPW WR, DRF WR and NearestNeigh WR as in Figure 2

.
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Figure 5: Testing for the impact of the dimension, uncorrelated outcomes setting. Boxplots

over 100 runs. DRF AIPW WR, DRF WR, NearestNeigh WR with and without ‘CHEATING’

option as in Figure 3

.
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5.2 Misspecification and double robustness

We next provide two synthetized experiments, to illustrate the double-robustness of our

augmented estimator (Equation (13)), that respectively correspond to Figure 6a and Figure 6b.

1. In the first experiment, we test for double robustness by mispecifying propensities. Instead

of using probability forests to learn propensities, we use a linear classifier that we train

using logistic regression. We generate probability of treatment non-linearly, of the form

σpXi,1Xi,2q for some σ : R Ñ r0, 1s (Cdf of a Gaussian, in our case). Treatment responses

are then generated as multi dimensional Bernoulli random variables, of means σppXi,1 ´

Xi,2q2q and σppXi,1 ` Xi,2q2q for respectively treated and non-treated individuals.

2. The second experiment tests for double robustness by mispecifying in the distributional

regression. We perform distributional regression as in Section 4.2.3 with logistic regression

on the outcomes, by training as in the homogeneous setting, i.e. by imposing u
ptq

1 “ . . . “

uptq
p for t “ 0, 1. We generate treatment assignments and responses exactly as in Figure 5

(heterogeneous setting).
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(a) Testing for robustness to mispecified propensities, d “ p “ 8
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(b) Testing for robustness to mispecified distributional regression, d “ p “ 5

Figure 6: Testing for double robustness, by mispecifying either propensities or distributional

regression.. Boxplots over 100 runs. DRF AIPW WR, DRF WR, NearestNeigh WR with as in

Figure 3, ‘mispecified’ refers to learning a linear logistic regression for propensities (Figure 6a),

or doing logistic distribution regression as in Section 4.2.3 and imposing a correlated outcomes

for distributional regression (fig. 6b) while the outcomes are generated uncorrelated.
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6 Application to the CRASH-3 RCT

We finally illustrate our methodologies to perform a Win Ratio analysis of the CRASH-3

trial dataset, that comes from the CRASH-3 clinical trial CRASH et al. [2019], which studied the

effects of tranexamic acid (TXA) in traumatic brain injury (TBI). In this section, we illustrate

the different ways our methodologies can be used to derive Win Ratio estimates with confidence

intervals. Overall, our conclusions are that different methods should be used for increased

robustness of the results, since the properties of the estimands that are being targeted may

differ.

6.1 Presentation of the dataset

Data description and preprocessing. The CRASH-3 RCT contains information on 12,

737 patients. In order to have lighter computations, we chose to use only a random sample

(without replacement) of 6, 000 patients for all our analysis. Missing data is imputed using

mice [Van Buuren and Groothuis-Oudshoorn, 2011].

1. Patients covariates include: siteId (hospital identifier), sex (male/female), age (years),

timeSinceInjury (hours since injury), sbpStatus (systolic blood pressure category), sys-

tolicBloodPressure (mmHg), gcsEyeOpening, gcsMotorResponse, gcsVerbalResponse (Glas-

gow Coma Scale scores), gcsTiming (time of GCS assessment), pupilReact (pupil reac-

tivity), majorExtracranial (major extracranial injury), intraCranialBleeding (intracranial

bleeding), epidural, subdural, subarachnoid, parenchymal, intraventricular (types of brain

injuries), eligible (study eligibility), consent (study consent), eyeOpening, communica-

tionAbility, motorResponse, feeding, toileting, grooming, levelOfFunctioning, employa-

bility, walking, washingDressing (functional outcomes), painDiscomfort, anxietyDepres-

sion, agitationAggression, fatigue (quality of life indicators), daysIcu (ICU stay duration),
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neuroHaemEvac (hematoma evacuation surgery), neuroOther (other neurosurgery), and

estBloodLoss (estimated blood loss).

2. Patients are either assigned Placebo (6,321) or TXA (6,416 patients).

3. Primary outcomes are death events in the 28 days following trauma, that we encode as

1 or 0.

4. Secondary outcomes are vascular risks. We encode them as 1 (if there is at least one

stroke, heart attack, pulmonary embolism or deep vein thrombosis) or 0 (if there are no

such events).

5. Tertiary outcomes are the number of days the patient stayed in the hospital (censored

at 28 days).

Computing the average treatment effect for each of these 3 outcomes lead respectively to the

confidence intervals, where Y1, Y2, Y3 are respectively our death, secondary effects and hospital-

ization duration outcomes:

E rY1p1q ´ Y1p0qs P r´0.0032, 0.0033s ,

E rY2p1q ´ Y2p0qs P r´0.0021, 0.0079s ,

and

E rY3p1q ´ Y3p0qs P r´0.2305, 0.4512s ,

computed using the difference of means estimator. None of these intervals are significant. Here

are some key conclusions from the study made by CRASH et al. [2019], to further contextualize

the dataset:

1. TXA reduces the risk of death due to TBI, but only if given within 3 hours of injury. The

earlier TXA is given, the greater the benefit. No significant benefit if given after 3 hours.
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2. TXA did not increase the risk of Stroke, Heart attack, Pulmonary embolism, Deep vein

thrombosis (DVT).

3. Greatest Benefit for Mild-to-Moderate TBI. TXA had the most impact on patients with

mild-to-moderate TBI (Glasgow Coma Scale 9-15). No significant survival benefit in severe

TBI (GCS ď 8), possibly because of the high fatality rate.

4. No Increase in Disability. TXA did not increase the number of survivors with severe

disability. Patients who survived had similar functional outcomes to those in the placebo

group.

5. Safe and Cost-Effective. TXA is cheap and widely available, making it a practical treat-

ment for emergency trauma care. Safe for use in pre-hospital settings and emergency

departments.

The final takeaway is that TXA is an effective, safe, and low-cost intervention that can save

lives in TBI when given early (within 3 hours). However, it does not help much in severe TBI

and must be administered as soon as possible after injury.

6.2 The different methodologies used

We compared the following methodologies in Figure 7:

1. Traditional win ratio, computed using all pairs of the dataset using the WINS package

[Cui and Huang, 2021].

2. Stratified Win Ratio [Dong et al., 2018]: we stratify according to the time since injury

the patient received the treatment (TXA or placebo). We computed the median of time

since injury, and made 2 stratas: patients below and above this median.
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3. Nearest neighbor approach for win ratio, as introduced in this paper. We either: (i) use the

Manahalahobis distance on the covariates, to naturally balance between different scales, or

(ii) perform a Factor Analysis of Mixed Data (FAMD) of the dataset (the equivalent

of a PCA for combined categorical and numerical covariates) from the FactoMineR package

[Lê et al., 2008]. We perform the FAMD analysis of the covariates, keep 95% of the

variance explained, and perform nearest neighbors on these dimensions. Nearest neighbors

are computed using the MatchIt package. Since nearest neighbors algorithm relies on

distance metrics (like Euclidean or Manahalahobis distances), it struggles with mixed data

types. FAMD transforms both numerical and categorical variables into a common latent

space, ensuring a more meaningful distance calculation. Furthermore, nearest neighbors

algorithm suffers from high-dimensional data because distances become less meaningful in

higher dimensions. FAMD captures the most important variations in fewer dimensions,

improving NN’s effectiveness.

4. Another version of nearest neighbors: Optimal Matchings, that solve (in the case where

|N1| ď |N0|

min
σ:N1ÑN0 injective

ÿ

iPN1

›

›Xσpiq ´ Xi

›

›

2
.

The difference with Nearest Neighbors as studied in our paper is that two treated units

cannot be assigned to the same control unit. We use this on both the full covariates and

on the features in the FAMD latent space.

5. Distributional Random Forests, as described in Section 4.2. We estimate the Win Propor-

tion (obtained with wpy, y1q “ 1tyąy1u) and the Loss Proportion (obtained with wpy, y1q “

1tyĺy1u), and estimate the Win Ratio as the ratio between win et loss proportions.

6. Our doubly robust approach, as described in Section 4.2. For the DRF and AIPW DRF,

forests are taken with 1000 trees.
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For confidence intervals, we either use those given by the WINS package for computing win ratios

(that use asymptotic gaussian approximations), or use bootstrapping with 1,000 bootstraps

for distributional regression approaches. Gaussian approximations for Win Ratio consist of

outputting confidence intervals that are of the form:

Win Ratio P
#Wins ˘ 1, 96

?
#Wins

#Losses ˘ 1, 96
?

#Losses .
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Figure 7: Win ratio computed on the CRASH-3 dataset using different methodologies.

6.3 Analysis of Figure 7.

The four pairing methods (complete pairings, stratified pairings according to the time since

injury, nearest neighbors and optimal pairing) are compared in Figure 7.

Win Ratio with complete and stratified pairings. These two pairings do not show

significant results: 1 is in the confidence intervals, meaning that the Win Ratio analysis with

these methods cannot conclude for or against treatment.
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Nearest neighbors and optimal pairings on the covariates with the Mahanalobis

distance. Nearest neighbors have the same behavior if performed on the covariates. However,

optimal pairings offer significant results against arm 1 in favor of placebo.

Nearest neighbors and optimal pairings on the FAMD latent space. However, when

performed on the FAMD latent space, Win Ratio computed using nearest neighbors and optimal

pairings are both significant (in favor of placebo). This suggests that computing matchings and

distances in different ways may lead to slightly different results. We believe that in our case,

due to mixed categorical and numerical features, the FAMD approach with distances in this

latent space seems to be the right approach.

Distributional regression approaches. The boxplots of the two distributional regression

approaches (DRF and AIPW DRF) are however much larger, reminiscent of the larger variability

of forest based approaches. As such, results for the DRF approach are not significant. However,

the augmented approach, AIPW DRF, offers significant results (in favor of placebo) despite its

large variance, illustrating its double robustness properties.

Conclusion from this study. Our Win Ratio analysis of the CRASH-3 study suggestsa

preference over placebo rather than over treatment. This is not in contradiction with the

conclusion of the CRASH-3 study, that were in favor of treatment only on a subpopulation.

ATEs computed on the whole population are indeed not statistically significant, as showed

above. This suggests is the strength of our methodologies, that can lead to significant discoveries,

in scenarios where traditional or stratified Win Ratio fail to do so. Indeed, as shown in the

simple synthetic example in Examples 1 and 2, in the presence of heterogeneity one must be

very careful at which estimand is being targeted. Further investigations would be necessary to

draw clinical conclusions from a Win Ratio analysis of the CRASH-3 dataset.
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7 Conclusion and open directions

In this paper, we have introduced a causal inference framework for hierarchical outcome

comparison methods like Win Ratio or Generalized Pairwise Comparisons. Our goal is to make

such methods more grounded, by offering new perspectives and shedding light on the different

causal effect measures that may be targeted when performing a Win Ratio or related analysis. In

particular, we highlight the fact that if the population is heterogeneous, complete pairings (the

historical and traditional way of forming pairs to compute the Win Ratio or the Net Benefit of

a treatment) may target a population-level estimand that reverses treatment recommendations.

The new causal effect measure τ‹ we introduce in Definition 2 aims at answering this fallacy

by taking into account covariate effects in the causal effect measure, thus being more robust

to heterogeneous population. We stress the fact that this causal effect measure is related to

stratified Win Ratio, since it can be estimated using an extreme form of stratification i.e., a

Nearest Neighbors approach when forming pairs of treated-control patients. Sections 4 and 4.2

are then devoted to the estimation of our newly introduced estimand τ‹, in an effort to extend

hierarchical outcome analyses and the Win Ratio methodology to observational settings and to

handle missing covariates. We do so using a classical inverse propensity weighting approach to

generalize our Nearest Neighbor pairing method, and using a less conventional distributional

regression approach, that proves to be very efficient by leveraging recent Machine Learning tools

such as distribution random forests.

Finally, our work paves the way to many open directions, among which we would like to

highlight one: policy learning in the presence of hierarchical outcomes, an unexplored direction

in the literature. A direct byproduct of our analysis and of Definition 2 is to define the value of

a policy π : X Ñ t0, 1u as:

V pπq
def
“ E

“

τ pπpXiqq
‹ pXiq

‰

,
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where

τ ptq
‹ pxq

def
“ E

“

wpY pxq
ptq|Yip1 ´ tqq|Xi “ x

‰

.

An optimal treatment rule (OTR) is a policy that solves the following maximization problem:

π‹
P argmax

πPΠ
V pπq ,

for Π a policy set. It then appears that for unconstrained policy estimation (i.e., when Π “

t0, 1u
X ), the OTR has a closed form expression that can easily be estimated using our developed

tools:

@x P X , π‹
pxq “ 1tδpxqą0u ,

where:

δpxq “ E
“

wpY pxq
p1q|Yip0qq|Xi “ x

‰

´ E
“

wpY pxq
p0q|Yip1qq|Xi “ x

‰

.
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A Proof of Theorem 1

A.1 Proof of Theorem 1.2

Proof of Theorem 1.2. Let p “ p̂
pn0,n1,Cnnq

W “ 1
n0

ř

iPN0
wpYσ‹piq|Yiq and p̄ “ E

“

wpY pXiqp1q|Yip0qq
‰

.

We have, where XN1 “ pXkqkPN1 :

p̄ ´ p “ E

«

1
n0

ÿ

iPN0

!

wpY
pXiq

i p1q|Yip0qq ´ wpYσ‹piq|Yiq

)ˇ

ˇ

ˇ
XN1

ff

l jh n

A1

`
1
n0

ÿ

iPN0

␣

wpYσ‹piq|Yiq ´ E
“

wpYσ‹piq|Yiq|i P N0, XN1

‰(

l jh n

A2

Control of A2. The term A2 is controlled by computing variance. Let

ai “ wpYσ‹piq|Yiq ´ E
“

wpYσ‹piq|Yiq|i P N0, XN1

‰

,

and note that we have E rai|i P N0, XN1s “ 0. Let

pk “ P pσpiq “ k|XN1q

be the (random) weights of the (random) Voronoi cells associated to elements of XN1 . We have,

where i ‰ j P N0 are arbitrary (note that conditioned on XN1 , N0 is fixed):

var pA2|XN1q “
var pai|XN1q

n0

`
n0 ´ 1

n0

´

E raiaj|σpiq “ σpjq, XN1sP pσpiq “ σpjq|XN1q

` E raiaj|σpiq ‰ σpjq, XN1sP pσpiq ‰ σpjq|XN1q

¯

ď
1
n0

` P pσpiq “ σpjq|XN1q `
n0 ´ 1

n0
E raiaj|σpiq ‰ σpjq, XN1sP pσpiq ‰ σpjq|XN1q .

Conditionnally on XN1 , σpiq and σpjq are independent random variables that assign k with

probability pk. Thus, we can prove that ai, aj are negatively correlated conditionally on σpiq ‰
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σpjq:

E
“

aiaj1tσpiq‰σpjqu|XN1

‰

“
ÿ

k‰ℓPN1

pkpℓE raiaj|XN1 , σpiq “ k, σpjq “ ℓs

“
ÿ

k‰ℓPN1

pkpℓE rai|XN1 , σpiq “ k, σpjq “ ℓsE raj|XN1 , σpiq “ k, σpjq “ ℓs

since ai KK aj|XN1 , σpiq “ k, σpjq “ ℓ

“
ÿ

k‰ℓPN1

pkpℓE rai|XN1 , σpiq “ ksE raj|XN1 , σpjq “ ℓs

“
ÿ

k,ℓPN1

pkpℓE rai|XN1 , σpiq “ ksE raj|XN1 , σpjq “ ℓs ´
ÿ

kPN1

p2
kE rai|XN1 , σpiq “ ks

2

ď

˜

ÿ

kPN1

pkE rai|XN1 , σpiq “ ks

¸2

“ 0 .

Using E
“

aiaj1tσpiq‰σpjqu|XN1

‰

“ E raiaj|XN1 , σpiq ‰ σpjqsP pσpiq ‰ σpjqq; we thus have that:

E raiaj|XN1 , σpiq ‰ σpjqs ď 0 .

Thus, we have that var pA2|XN1q ď 1
n0

` P pσpiq “ σpjqq, and the last step of this first part of

the proof is to show that P pσpiq “ σpjqq Ñ 0, the purpose of the following lemma.

Lemma 1. We have, for i ‰ j P N0:

P pσpiq “ σpjqq Ñ 0 .

Proof of Lemma 2. We have:

P pσpiq “ σpjqq “
1
n1

ÿ

kPN1

P pσpiq “ k|σpjq “ kq .

Let k P N1 and x P SupppXq: @ε ą 0,P pX P Bpx, εqq ą 0.

First case: P pX “ xq “ px ą 0. In that case, let Nx “ |tℓ P N1, Xℓ “ xu. We have that

P pσpiq “ k|Nx, Xk “ x, σpjq “ kq “
1

Nx

,
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and Nx is a binomial random variable of parameters pn1, pxq. This leads to:

P pσpiq “ k|Xk “ x, σpjq “ kq “

n1
ÿ

N“1
2´n1

pN
x p1 ´ pxqn1´N

N

ˆ

n1

N

˙

“

n1
ÿ

N“1

pN
x p1 ´ pxqn1´N

n1 ` 1

ˆ

n1 ` 1
N ` 1

˙

ď
1

pxpn1 ` 1q
.

Thus, P pσpiq “ k|Xk “ x, σpjq “ kq Ñ 0 as n1 Ñ 8.

Second case: P pX “ xq “ 0 (no Dirac mass). Let δ P p0, 1q and let R ą ε ą 0 such that

P pX P Bpx, εqq ă δ and P pX P Bpx, Rqq ą 1´δ. We cover Bp0, RqzBp0, εq with m balls of radius

ε{2: Bp0, RqzBp0, εq Ă
Ťm

r“1 Bpzr, ε{2q, where zr P Bp0, RqzBp0, εq. We remove all zr that satisfy

P pX P Bpzr, ε{2qq “ 0 from this union. Let E be the event t@r P rms, Dℓ P N1ztku, Xℓ P Bpzr, ε{2qu.

We have that

P pσpiq “ k|Xk “ x, σpjq “ k, Eq ď P pXi P Bpx, εqq

ď δ .

Then,

P
`

EC
˘

ď

m
ÿ

r“1
P p@ℓ P N1ztku, Xℓ R Bpzr, ε{2qq

ď mp1 ´ pminq
n1´1 ,

where pmin “ minrPrms P pX P Bpzr, ε{2qq. Thus, P pEq Ñ 1, and P pσpiq “ k|Xk “ x, σpjq “ kq ď

1 ´ P pEq ` δ. We can thus conclude that P pσpiq “ k|Xk “ x, σpjq “ kq Ñ 0 as n1 Ñ 8.

Wrapping things up. Using P pσpiq “ k|σpjq “ kq “
ş

X P pσpiq “ k|σpjq “ k, Xk “ xq dPpXk “

xq, we have P pσpiq “ k|σpjq “ kq Ñ 0 as n1 Ñ 8, using dominated convergence.

Using this, we have var pA2q Ñ 0, leading to A2 Ñ 0 in probability.
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Control of A1. We now control A1, using the continuity assumption. Using unconfoundedness:

|A1| ď E
“

δpXi, Xσ‹piq, Yip0qq|XN1 , Ti “ 0
‰

, where

δpx, x1, yq
def
“

ˇ

ˇ

ˇ
E
”

wpY
pXiq

i p1q|yq|Xi “ x
ı

´ E rwpYjp1q|yq|Xj “ x1
s

ˇ

ˇ

ˇ
.

Let ε ą 0 and y fixed. Using our continuity and compactness assumptions, x, x1 ÞÑ δpx, x1, yq

is uniformly continuous on X ˆ X , so that there exists η ą such that if }x ´ x1} ď η, we

have δpx, x1, yq ď ε. We are going to show that with high probability,
›

›Xi ´ Xσ‹piq

›

› ď η.

Using compactness of X , there exist u1, . . . , up P X such that X Ă
Ťp

k“1 Bpuk, η{2q. Let

pk “ P pXi P Bpuk, η{2qq: we assume that pk ą 0 for all k, otherwise we remove this ball and

the corresponding uk. Let pmin “ mink pk ą 0. Let kx P rps such that Xi P Bpukx , η{2q. We

have, working conditionnally on N0, N1, i P N0:

P
`
›

›Xi ´ Xσ‹piq

›

› ą η
˘

ď E
“

P
`

Xσ‹piq R Bpukx , η{2q|kx

˘‰

“ E rP p@j P N1 , Xj R Bpukx , η{2q|kxqs

“ E rp1 ´ pkxq
n1s

ď p1 ´ pminq
n1

ÝÑ
n1Ñ8

0 .

This leads to:

P
`

δpXi, Xσpiq, yq ą ε
˘

ď p1 ´ pminq
n1 ,

and thus P
`

δpXi, Xσpiq, yq Ñ 0
˘

“ 1 as n1 Ñ 8, leading to E
“

δpXi, Xσpiq, Yip0qq
‰

Ñ 0. We thus

have that E r|A1|s Ñ 0, and thus A1 Ñ 0 in probability, since |A1| ď 1 almost surely. This

concludes the proof.
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A.2 Proof of Theorem 1.1

Proof of Theorem 1.1. Let p̄ “ E rwpYip1q|Yjp0qqs for i ‰ j. We now prove the second point,

with complete pairings. Using our assumptions, we have that

E rwpYi|Yjq|Ti “ 1, Tj “ 0s “ E rwpYjp1q|Yip0qqs
def
“ p̄ ,

so that

E
”

p̂
pn0,n1,CTotq

W

ı

“ p̄ .

Since 0 ď w ď 1, var pwpYj|Yiqq ď 1, leading to:

var
´

p̂
pn0,n1,CTotq

W

¯

“
1

n2
0n

2
1

ÿ

i,i1PN0,j,j1PN1

E rpwpYj|Yiq ´ p̄qpwpYj1 |Yi1qqs

“
1

n2
0n

2
1

ÿ

iPN0,jPN1

E
“

pwpYj|Yiq ´ p̄q
2‰

`
1

n2
0n

2
1

ÿ

i‰i1PN0,j,j1‰N1

E rpwpYj|Yiq ´ p̄qpwpYj1 |Yi1q ´ p̄qs

l jh n

“0 (independence)

`
1

n2
0n

2
1

ÿ

iPN0,j‰j1PN1

E rpwpYj|Yiq ´ p̄qpwpYj1 |Yi1qqs

`
1

n2
0n

2
1

ÿ

i‰i1PN0,jPN1

E rpwpYj|Yiq ´ p̄qpwpYj1 |Yi1qqs

ď
1

n0n1
`

1
n0

`
1
n1

.

Thus, p̂
pn0,n1,CTotq

W ÝÑ p̄ in probability as n0, n1 Ñ 8.

B Proof of Theorem 2

Proof. Let

p̂
def
“

1
n

ÿ

iPN0

wpYσ‹
1piq|Yiqp1 ´ π̂pXiqq

´1

be the IPW estimator,

p̂‹ def
“

1
n

ÿ

iPN0

wpYσ‹
1piq|Yiqp1 ´ πpXiqq

´1
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be the IPW estimator with oracle propensities, and p “ τ‹ be the targeted estimand. We have:

p̂ ´ p “ pp̂ ´ p̂‹
q ` pp̂‹

´ pq .

For this first term,

|p̂ ´ p̂‹
| “

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1
p1 ´ TiqwpYσ‹

1piq|Yiq
␣

p1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1(

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

n
ÿ

i“1
p1 ´ TiqwpYσ‹

1piq|Yiq
ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ

ď
1
n

n
ÿ

i“1

ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ

ď
1
n

n
ÿ

i“1

␣

1tπ̂pXiqă1´η1u

ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ

`1tπ̂pXiqě1´η1u

ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ

(

,

for some given 0 ă η1 ă η. First, notice that u ÞÑ p1 ´ uq´2 is η
1´2´Lipschitz on r0, 1 ´ η1s, so

that:

1
n

n
ÿ

i“1
1tπ̂pXiqă1´η1u

ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ ď

1
nη12

n
ÿ

i“1
1tπ̂pXiqă1´η1u |π̂pXiq ´ πpXiq|

ď
1

nη12

n
ÿ

i“1
|π̂pXiq ´ πpXiq|

“ η
1´2E r|π̂pXiq ´ πpXiq|s

`
1

nη12

n
ÿ

i“1
t|π̂pXiq ´ πpXiq| ´ E r|π̂pXiq ´ πpXiq|su .

Here, we have that E r|π̂pXiq ´ πpXiq|s Ñ 0 using mean consistency, while the second term

converges to 0 in probability (sum of n centered bounded random variables). Then, using

Cauchy-Schwarz inequality,

1
n

n
ÿ

i“1
1tπ̂pXiqě1´η1u

ˇ

ˇp1 ´ π̂pXiqq
´1

´ p1 ´ πpXiqq
´1ˇ
ˇ

ď

d

1
n

n
ÿ

i“1
1tπ̂pXiqě1´η1u ˆ

1
n

n
ÿ

i“1
pp1 ´ π̂pXiqq´1 ´ p1 ´ πpXiqq´1q

2 .
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The first factor in the square root satisfies

1
n

n
ÿ

i“1
1tπ̂pXiqě1´η1u “ P pπ̂pXiq ě 1 ´ η1

q `
1
n

n
ÿ

i“1
1tπ̂pXiqě1´η1u ´ P pπ̂pXiq ě 1 ´ η1

q .

The first term is deterministic and converges to zero almost surely thanks to pointwise con-

vergence and dominated convergence, while the second term converges to zero as the averaged

sum of n independent, centered and bounded random variables. All this leads to p̂ ´ p̂‹ Ñ 0 in

probability and almost surely.

For the second term p̂‹ ´ p, we adapt the proof of Theorem 1.2. We extend the defintion

of σ‹ to N1: for i P N1 we have σ‹piq “ i. We have, using that p “ E rwpYip1q, Yip0qqs “

E
”

1´Ti

1´πpXiq
wpYip1q, Yip0qq

ı

with unconfoundedness:

p ´ p̂‹
“ E

«

1
n

ÿ

iPN0

wpY pXiqp1q|Yip0qq ´ wpYσ‹piq|Yiq

1 ´ πpXiq

ˇ

ˇ

ˇ
XN1

ff

l jh n

A1

´
1
n

n
ÿ

i“1

wpYσ‹piq|Yiqp1 ´ Tiq

1 ´ πpXiq
´ E

„

wpYσ‹piq|Yiqp1 ´ Tiq

1 ´ πpXiq

ˇ

ˇ

ˇ
XN1

ȷ

l jh n

A2

.

Control of A2. The term A2 is controlled computing its variance, as in the proof of Theorem 1.2.

Let ai “
wpYσ‹piq|Yiqp1´Tiq

1´πpXiq
´E

“

wpYσ‹piq|Yiq|XN1

‰

. Since E rais “ 0, we have E rA2|XN1s “ 0. Then,

using overlap, |ai| ď 1{η almost surely, so that E ra2
i |N1s ď 1{η2.

Let pk “ P pσpiq “ k|XN1q be the (random) weights of the (random) Voronoi cells associated

to XN1 . We have:

var pA2|XN1q “
1
n2

n
ÿ

i“1
var pai|XN1q

`
1
n2

ÿ

i‰j

´

E raiaj|σpiq “ σpjq, XN1sP pσpiq “ σpjq|XN1q

` E raiaj|σpiq ‰ σpjq, XN1sP pσpiq ‰ σpjq|XN1q

¯

ď
1

η2n
`

1
n2

ÿ

i‰j

P pσpiq “ σpjq|XN1q `
n ´ 1

n
E raiaj|σpiq ‰ σpjq, XN1sP pσpiq ‰ σpjq|XN1q
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Conditionnally on XN1 and on i, j P N0, σpiq, σpjq are independent random variables that assign

k with probability pk. Thus, we can prove that ai, aj are negatively correlated conditionally on

σpiq ‰ σpjq:

E
“

aiaj1tσpiq‰σpjqu|XN1

‰

“
ÿ

k‰ℓPN1

pkpℓE raiaj|XN1 , σpiq “ k, σpjq “ ℓs

“
ÿ

k‰ℓPN1

pkpℓE rai|XN1 , σpiq “ k, σpjq “ ℓsE raj|XN1 , σpiq “ k, σpjq “ ℓs

since ai KK aj|XN1 , σpiq “ k, σpjq “ ℓ

“
ÿ

k‰ℓPN1

pkpℓE rai|XN1 , σpiq “ ksE raj|XN1 , σpjq “ ℓs

“
ÿ

k,ℓPN1

pkpℓE rai|XN1 , σpiq “ ksE raj|XN1 , σpjq “ ℓs ´
ÿ

kPN1

p2
kE rai|XN1 , σpiq “ ks

2

ď

˜

ÿ

kPN1

pkE rai|XN1 , σpiq “ ks

¸2

“ 0 .

Thus, we have that var pA2q ď 1
n0

` P pσpiq “ σpjq|i, j P N0q where i ‰ j.

Lemma 2. We have, for i ‰ j:

P pσpiq “ σpjq|i, j P N0q Ñ 0 .

Proof of Lemma 2. First, note that we have, for any measurable set S Ă X :

P pXi P S|Ti “ 1q

P pXi P S|Ti “ 0q
P

„

η2,
1
η2

ȷ

.

Indeed, we have for t “ 0, 1 and measurable set S Ă X such that P pXi P Sq ą 0:

P pXi P S|Ti “ tq “
P pTi “ t|Xi P Sq

P pTi “ tq
ˆ P pXi P Sq .

Using overlap, this leads to PpXiPS|Ti“1q

PpXiPS|Ti“0q
P

”

η2, 1
η2

ı

. A consequence is that for all measurable

S Ă X , we have P pX P Sq “ 0 ðñ P pX P S|T “ 0q “ 0 ðñ P pX P S|T “ 1q “ 0.
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We have P pσpiq “ σpjqq “ 1
n1

ř

kPN1
P pσpiq “ k|σpjq “ kq. We work conditionally on N1, N0.

Note that we have n0, n1 Ñ 8 almost surely as n Ñ 8. Let k P N1 and x P SupppXq:

@ε ą 0,P pX P Bpx, εqq ą 0.

First case: P pX “ x|T “ 1q “ px ą 0. In that case, let Nx “ |tℓ P N1, Xℓ “ xu. We have

that

P pσpiq “ k|Nx, Xk “ x, σpjq “ kq “
1

Nx

,

and Nx is a binomial random variable of parameters pn1, pxq. This leads to:

P pσpiq “ k|Xk “ x, σpjq “ kq “

n1
ÿ

N“1
2´n1

pN
x p1 ´ pxqn1´N

N

ˆ

n1

N

˙

“

n1
ÿ

N“1

pN
x p1 ´ pxqn1´N

n1 ` 1

ˆ

n1 ` 1
N ` 1

˙

ď
1

pxpn1 ` 1q
.

Thus, P pσpiq “ k|Xk “ x, σpjq “ kq Ñ 0 as n1 Ñ 8.

Second case: P pX “ xq “ 0. Let δ P p0, 1q. Let R ą ε ą 0 such that P pX P Bpx, εqq ă δ and

P pX P Bpx, Rqq ą 1´ δ. We cover Bp0, RqzBp0, εq with m balls of radius ε{2: Bp0, RqzBp0, εq Ă

Ťm
r“1 Bpzr, mq, where zr P Bp0, RqzBp0, εq. We remove all zr that satisfy P pX P Bpzr, ε{2qq “ 0

from this union. Let E be the event t@r P rms, Dℓ P N1ztku, Xℓ P Bpzr, ε{2qu. We have that

P pσpiq “ k|Xk “ x, σpjq “ k, Eq ď P pXi P Bpx, εqq

ď δ{η2 .

Then,

P
`

EC
˘

ď

m
ÿ

r“1
P p@ℓ P N1ztku, Xℓ R Bpzr, ε{2qq

ď mp1 ´ pminq
n1´1 ,

where pmin “ minrPrms P pX P Bpzr, ε{2q|T “ 1q ą 0. Thus, P pEq Ñ 1, and P pσpiq “ k|Xk “ x, σpjq “ kq ď

1 ´ P pEq ` δ. We can thus conclude that P pσpiq “ k|Xk “ x, σpjq “ kq Ñ 0 as n1 Ñ 8.
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Wrapping things up. Using P pσpiq “ k|σpjq “ kq “
ş

X P pσpiq “ k|σpjq “ k, Xk “ xq dPpXk “

xq, we have P pσpiq “ k|σpjq “ kq Ñ 0, using dominated convergence.

Using this, we have var pA2q Ñ 0, leading to A2 Ñ 0 in probability.

Control of A1. Using unconfoundedness and overlap:

|A1| ď δ´1E
“

δpXi, Xσ‹piq, Yip0qq|XN1 , Ti “ 0
‰

, where

δpx, x1, yq
def
“ |E rwpYip1q|yq|Xi “ xs ´ E rwpYjp1q|yq|Xj “ x1

s| .

Let ε ą 0 and y fixed. Using our continuity and compactness assumptions, x, x1 ÞÑ δpx, x1, yq

is uniformly continuous on X ˆ X , so that there exists η ą such that if }x ´ x1} ď η, we

have δpx, x1, yq ď ε. We are going to show that with high probability,
›

›Xi ´ Xσ‹piq

›

› ď η.

Using compactness of X , there exist u1, . . . , up P X such that X Ă
Ťp

k“1 Bpuk, η{2q. Let

pk “ P pXi P Bpuk, η{2qq: we assume that pk ą 0 for all k, otherwise we remove this ball and

the corresponding uk. Let pmin “ mink pk ą 0. Let kx P rps such that Xi P Bpukx , η{2q. We

have, working conditionnally on N0, N1, i P N0:

P
`
›

›Xi ´ Xσ‹piq

›

› ą η
˘

ď E
“

P
`

Xσ‹piq R Bpukx , η{2q|kx

˘‰

“ E rP p@j P N1 , Xj R Bpukx , η{2q|kxqs

“ E rp1 ´ ηpkxq
n1s

ď p1 ´ ηpminq
n1

ÝÑ
n1Ñ8

0 .

This leads to:

P
`

δpXi, Xσpiq, yq ą ε
˘

ď p1 ´ ηpminq
n1 ,

and thus P
`

δpXi, Xσpiq, yq Ñ 0
˘

“ 1 as n1 Ñ 8, leading to E
“

δpXi, Xσpiq, Yip0qq
‰

Ñ 0 using

dominated convergence. We thus have that E r|A1|s Ñ 0, and thus A1 Ñ 0 in probability, since

|A1| ď 1 almost surely.
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C Proof of Theorem 3

Proof of Theorem 3. We have, for the estimator τ̂ defined in Equation (12):

τ̂ ´ τ‹ “
1
n

n
ÿ

i“1
p1 ´ Tiqq̂1pXi, Yiq ` Tiq̂0pXi, Yiq ´ E

“

wpY pXiq
p1q, Yip0qq

‰

“
1
n

n
ÿ

i“1
p1 ´ Tiqq1pXi, Yiq ` Tiq0pXi, Yiq ´ E

“

wpY pXiq
p1q, Yip0qq

‰

`
1
n

n
ÿ

i“1
p1 ´ Tiqpq̂1pXi, Yiq ´ q1pXi, Yiqq ` Tipq̂0pXi, Yiq ´ q0pXi, Yiqq .

For the first term, we have that p1 ´ Tiqq1pXi, Yiq ` Tiq0pXi, Yiq are i.i.d. bounded random

variables, of mean E
“

wpY pXiqp1q, Yip0qq
‰

, so that the first sum converges almost surely to 0. We

even have, using the central limit theorem, that:

1
?

n

n
ÿ

i“1
p1 ´ Tiqq1pXi, Yiq ` Tiq0pXi, Yiq ´ E

“

wpY pXiq
p1q, Yip0qq

‰

ÝÑ
P

N p0, σ2
8q ,

where σ2
8 “ var

`

p1 ´ Tiqq1pXi, Yiq ` Tiq0pXi, Yiq ´ E
“

wpY pXiqp1q, Yip0qq
‰˘

. For the second

term, we have:
ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1
p1 ´ Tiqpq̂1pXi, Yiq ´ q1pXi, Yiqq ` Tipq0pXi, Yiq ´ q̂0pXi, Yiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
n

n
ÿ

i“1
|q̂1pXi, Yiq ´ q1pXi, Yiq| ` |q̂0pXi, Yiq ´ q0pXi, Yiq|

ď
1
n

n
ÿ

i“1
p1 ´ Tiq

`

|q̂1pXi, Yiq ´ q1pXi, Yiq| ´ E r|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0s
˘

` Ti

`

|q̂0pXi, Yiq ´ q0pXi, Yiq| ´ E r|q̂1pXi, Yiq ´ q1pXi, Yiq|Ti “ 1s
˘

` E r|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0s ` E r|q̂0pXi, Yiq ´ q0pXi, Yiq||Ti “ 1s .

These last two terms are deterministic and converge to zero due to our assumptions. The big

sum converges almost surely to zero, as the average of n i.i.d. centered and bounded random
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variables. This leads to the consistency of our estimator. For the asymptotic normality, it

remains to prove that

Ai “
1
n

n
ÿ

i“1
p1 ´ Tiq

`

|q̂1pXi, Yiq ´ q1pXi, Yiq| ´ E r|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0s
˘

` Ti

`

|q̂0pXi, Yiq ´ q0pXi, Yiq| ´ E r|q̂1pXi, Yiq ´ q1pXi, Yiq|Ti “ 1s
˘

is op1{
?

nq. We have

var
`

p1 ´ Tiq
`

|q̂1pXi, Yiq ´ q1pXi, Yiq| ´ E r|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0s
˘˘

ď var p|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0q

ď E
“

|q̂1pXi, Yiq ´ q1pXi, Yiq|
2
|Ti “ 0

‰

ď E r|q̂1pXi, Yiq ´ q1pXi, Yiq||Ti “ 0s ,

since |q̂1pXi, Yiq ´ q1pXi, Yiq| ď 1 (these are probabilities). Thus, under ou assumption, the

variance of each term of Ai is op
a

1{nq. Then, P p|1{n
ř

i Ai| ą ε{
?

nq ď var pAiq Ñ 0. This

leads to 1{n
ř

i Ai| “ oPp1{
?

nq, and concludes the proof.

D Proof of Theorem 4

Proof of Theorem 4. Assume first that (i) holds. Let

τ ‹
AIPW

def
“

1
n

n
ÿ

i“1

"

p1 ´ Tiqq̂1pXi, Yiq ´ λpq̂1pXi, Yiq ´ wpYσ0piq|Yiqq
1 ´ Ti

p1 ´ πpXiqq

*

`
1
n

n
ÿ

i“1

"

Tiq̂0pXi, Yiq ´ p1 ´ λqpq̂0pXi, Yiq ´ wpYi|Yσ1piqqq
Ti

πpXiq

*

.

We have:

τ̂AIPW ´ τ ‹
AIPW “

λ

n

n
ÿ

i“1
pq̂1pXi, Yiq ´ wpYσ0piq|Yiqq

"

1 ´ Ti

p1 ´ πpXiqq
´

1 ´ Ti

p1 ´ π̂pXiqq

*

`
1 ´ λ

n

n
ÿ

i“1
pq̂0pXi, Yiq ´ wpYi|Yσ1piqqq

"

Ti

πpXiq
´

Ti

π̂pXiq

*

,
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so that:

|τ̂ ‹
AIPW ´ τAIPW| ď

λ

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

pq̂1pXi, Yiq ´ wpYσ0piq|Yiqq

"

1 ´ Ti

p1 ´ πpXiqq
´

1 ´ Ti

p1 ´ π̂pXiqq

*
ˇ

ˇ

ˇ

ˇ

`
1 ´ λ

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

pq̂0pXi, Yiq ´ wpYi|Yσ1piqqq

"

Ti

πpXiq
´

Ti

π̂pXiq

*
ˇ

ˇ

ˇ

ˇ

ď
λ

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

1 ´ Ti

p1 ´ πpXiqq
´

1 ´ Ti

p1 ´ π̂pXiqq

ˇ

ˇ

ˇ

ˇ

`
1 ´ λ

n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

Ti

πpXiq
´

Ti

π̂pXiq

ˇ

ˇ

ˇ

ˇ

.

We showed in the proof of Theorem 2 that this quantity converges to 0 under our assumptions.

We thus are left with proving that τ ‹
AIPW converges in probability towards τ‹.‘ We have:

τ ‹
AIPW ´ τ‹ “

λ

n

n
ÿ

i“1

"

wpYσ0piq|Yiq
1 ´ Ti

p1 ´ πpXiqq
´ τ‹

*

`
1 ´ λ

n

n
ÿ

i“1

"

wpYi|Yσ1piqq
Ti

πpXiq
´ τ‹

*

l jh n

pIq

`
1
n

n
ÿ

i“1

"

p1 ´ Tiqq̂1pXi, Yiq ´ λq̂1pXi, Yiq
1 ´ Ti

p1 ´ πpXiqq

*

l jh n

pIIq

`
1
n

n
ÿ

i“1

"

Tiq̂0pXi, Yiq ´ p1 ´ λqq̂0pXi, Yiq
Ti

πpXiq

*

l jh n

pIIIq

.

Using Theorem 2, we directly have that pIq converges in probability towards 0. We now need

to prove the same for pIIq ´ pIIIq. We start with pIIq. First,

E rp1 ´ Tiqq̂1pXi, Yiq|q̂1s “ P pTi “ 0qE rp1 ´ Tiqq̂1pXi, Yiq|Ti “ 0, q̂1s ,

E
„

q̂1pXi, Yiq
1 ´ Ti

p1 ´ πpXiqq
|q̂1

ȷ

“ E rp1 ´ Tiqq̂1pXi, Yiq|Ti “ 0, q̂1s ,

and thus,

E
„

p1 ´ Tiqq̂1pXi, Yiq ´ λq̂1pXi, Yiq
1 ´ Ti

p1 ´ πpXiqq
|q̂1

ȷ

“ pP pTi “ 0q´λqE rp1 ´ Tiqq̂1pXi, Yiq|Ti “ 0, q̂1s .
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Now, since each term in the sum that defines pIIq is bounded by 1{η, we get that:

E
“

pIIq
2
|q̂1

‰

“ pP pTi “ 0q ´ λq
2E rp1 ´ Tiqq̂1pXi, Yiq|Ti “ 0, q̂1s

2

`
var

´

p1 ´ Tiqq̂1pXi, Yiq ´ λq̂1pXi, Yiq
1´Ti

p1´πpXiqq
|q̂1

¯

n

ď pP pTi “ 0q ´ λq
2E rp1 ´ Tiqq̂1pXi, Yiq|Ti “ 0, q̂1s

2
`

1
n

ď pP pTi “ 0q ´ λq
2

`
1
n

ÝÑ 0 ,

under our assumption on λ. The same then applies to pIIIq, concluding the proof for our first

point.

Assume now that (ii) holds. Let

τ ˚
AIPW

def
“

1
n

n
ÿ

i“1

"

p1 ´ Tiqq1pXi, Yiq ´ λpq1pXi, Yiq ´ wpYσ0piq|Yiqq
1 ´ Ti

p1 ´ π̂pXiqq

*

`
1
n

n
ÿ

i“1

"

Tiq0pXi, Yiq ´ p1 ´ λqpq0pXi, Yiq ´ wpYi|Yσ1piqqq
Ti

π̂pXiq

*

.

We have:

|τ̂AIPW ´ τ ˚
AIPW| ď

1
n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

1 ´ Ti ´ λ
1 ´ Ti

p1 ´ π̂pXiqq

ˇ

ˇ

ˇ

ˇ

|q̂1pXi, Yiq ´ q1pXi, Yiq|

`
1
n

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

Ti ´ p1 ´ λq
Ti

π̂pXiq

ˇ

ˇ

ˇ

ˇ

|q̂0pXi, Yiq ´ q0pXi, Yiq|

ď
1

η1n

n
ÿ

i“1
|q̂1pXi, Yiq ´ q1pXi, Yiq|

`
1

η1n

n
ÿ

i“1
|q̂0pXi, Yiq ´ q0pXi, Yiq| ,

and we have shown in Theorem 3 that under our assumptions, these two sums converge to 0 in
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probability. Hence, we are left with proving that |τ ˚
AIPW ´ τ‹| Ñ 0.

|τ ˚
AIPW ´ τ‹| ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1
p1 ´ Tiqq1pXi, Yiq `

1
n

n
ÿ

i“1
Tiq0pXi, Yiq ´ τ‹

ˇ

ˇ

ˇ

ˇ

ˇ

`
λ

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pq1pXi, Yiq ´ wpYσ0piq|Yiqq

ˇ

ˇ

ˇ

ˇ

ˇ

`
1 ´ λ

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Ti

π̂pXiq
pq0pXi, Yiq ´ wpYi|Yσ1piqqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

For the first term, we already know that it converges to 0 thanks to the proof of Theorem 3.

We thus need to control the second and third sums. We have, for the second sum:

1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pq1pXi, Yiq ´ wpYσ0piq|Yiqq “

1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE rwpYip1q|Yip0qq|Xi, Yip0qs ´ wpYσ0piq|Yip0qqq

“
1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE

”

wpY
pXiq

i p1q, Yip0qq|Xi, Yip0q

ı

´ E
“

wpYσ0piq|Yip0qq|Xi, Yip0q, XN1

‰

q

`
1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE

“

wpYσ0piq|Yip0qq|Xi, Yip0q, XN1

‰

´ wpYσ0piq|Yip0qqq .

Here,
1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE

“

wpYσ0piq|Yip0qq|Xi, Yip0q, XN1

‰

´ wpYσ0piq|Yip0qqq

is the mean of n bounded and centered random variables. These random variables are not

independent, but conditionally on XN1 they are. Thus, this sum converges almost surely to 0

conditionally on XN1 , and thus converges almost surely to 0. We now are left with controlling:

A
def
“

1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE

”

wpY
pXiq

i , Yip0qq|Xi, Yip0q

ı

´ E
“

wpYσ0piq|Yip0qq|Xi, Yip0q, XN1

‰

q .

Note that using unconfoundedness and our uniform boundedness assumption on π̂:

|A| ď δ1´1E
“

ζpXi, Xσ0piq, Yip0qq|XN1 , Ti “ 0
‰

, where

ζpx, x1, yq
def
“

ˇ

ˇ

ˇ
E
”

wpY
pXiq

i p1q|yq|Xi “ x
ı

´ E rwpYjp1q|yq|Xj “ x1
s

ˇ

ˇ

ˇ
.

Let ε ą 0 and y fixed. Using our continuity and compactness assumptions, x, x1 ÞÑ ζpx, x1, yq

is uniformly continuous on X ˆ X , so that there exists η ą such that if }x ´ x1} ď η, we
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have ζpx, x1, yq ď ε. We are going to show that with high probability,
›

›Xi ´ Xσ0piq

›

› ď η.

Using compactness of X , there exist u1, . . . , up P X such that X Ă
Ťp

k“1 Bpuk, η{2q. Let

pk “ P pXi P Bpuk, η{2qq: we assume that pk ą 0 for all k, otherwise we remove this ball and

the corresponding uk. Let pmin “ mink pk ą 0. Let kx P rps such that Xi P Bpukx , η{2q. We

have, working conditionnally on N0, N1, i P N0:

P
`
›

›Xi ´ Xσ0piq

›

› ą η
˘

ď E
“

P
`

Xσ0piq R Bpukx , η{2q|kx

˘‰

“ E rP p@j P N1 , Xj R Bpukx , η{2q|kxqs

“ E rp1 ´ ηpkxq
n1s

ď p1 ´ ηpminq
n1

ÝÑ
n1Ñ8

0 .

This leads to:

P
`

ζpXi, Xσ0piq, yq ą ε
˘

ď p1 ´ ηpminq
n1 ,

and thus P
`

ζpXi, Xσpiq, yq Ñ 0
˘

“ 1 as n1 Ñ 8, leading to E
“

ζpXi, Xσ0piq, Yip0qq
‰

Ñ 0 using

dominated convergence. We thus have that E r|A|s Ñ 0, and A Ñ 0 in probability, since |A| ď 1

almost surely. We proceed in the same way for the remaining term:

1
n

n
ÿ

i“1

1 ´ Ti

1 ´ π̂pXiq
pE

“

wpYσ0piq|Yip0qq|Xi, Yip0q, XN1

‰

´ wpYσ0piq|Yip0qqq ,

concluding the proof.
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