
Asynchronous SGD Beats Minibatch SGD
Under Arbitrary Delays

Konstantin Mishchenko Francis Bach Mathieu Even Blake Woodworth

DI ENS, Ecole normale supérieure,
Université PSL, CNRS, INRIA

75005 Paris, France

Abstract

The existing analysis of asynchronous stochastic gradient descent (SGD) degrades
dramatically when any delay is large, giving the impression that performance
depends primarily on the delay. On the contrary, we prove much better guarantees
for the same asynchronous SGD algorithm regardless of the delays in the gradients,
depending instead just on the number of parallel devices used to implement the
algorithm. Our guarantees are strictly better than the existing analyses, and we
also argue that asynchronous SGD outperforms synchronous minibatch SGD in the
settings we consider. For our analysis, we introduce a novel recursion based on
“virtual iterates” and delay-adaptive stepsizes, which allow us to derive state-of-the-
art guarantees for both convex and non-convex objectives.

1 Introduction

We consider solving stochastic optimization problems of the form

minx∈Rd {F (x) := Eξ∼Df(x; ξ)}, (1)

which includes machine learning (ML) training objectives, where f(x; ξ) represents the loss of a
model parameterized by x on the datum ξ. Depending on the application, D could represent a
finite dataset of size n or a population distribution. In recent years, such stochastic optimization
problems have continued to grow rapidly in size, both in terms of the dimension d of the optimization
variable—i.e., the number of model parameters in ML—and in terms of the quantity of data—i.e., the
number of samples ξ1, . . . , ξn ∼ D being used. With d and n regularly reaching the tens or hundreds
of billions, it is increasingly necessary to use parallel optimization algorithms to handle the large
scale and to benefit from data stored on different machines.

There are many ways of employing parallelism to solve (1), but the most popular approaches in
practice are first-order methods based on stochastic gradient descent (SGD). At each iteration, SGD
employs stochastic estimates of ∇F to update the parameters as xk = xk−1 − γk∇f(xk−1; ξk−1)
for an i.i.d. sample ξk−1 ∼ D. Given M machines capable of computing these stochastic gradient
estimates ∇f(x; ξ) in parallel, one approach to parallelizing SGD is what we call “Minibatch SGD.”
This refers to a synchronous, parallel algorithm that dispatches the current parameters xk−1 to
each of the M machines, waits while they compute and communicate back their gradient estimates
g1
k−1, . . . ,g

M
k−1, and then takes a minibatch SGD step xk = xk−1 − γk · 1

M

∑M
m=1 g

m
k−1. This is a

natural idea with long history [16, 18, 54] and it is a commonly used in practice [e.g., 22]. However,
since Minibatch SGD waits for all M of the machines to finish computing their gradient estimates
before updating, it proceeds only at the speed of the slowest machine.

There are several possible sources of delays: nodes may have heterogeneous hardware with different
computational throughputs [23, 25], network latency can slow the communication of gradients, and

Preprint. Under review.

ar
X

iv
:2

20
6.

07
63

8v
1

 [
m

at
h.

O
C

]
 1

5
Ju

n
20

22

nodes may even just drop out [44]. Slower “straggler” nodes can arise in many natural parallel settings
including training ML models using multiple GPUs [14] or in the cloud, and sensitivity to these
stragglers poses a serious problem for Minibatch SGD and other similar synchronous algorithms.

1.1 Asynchronous SGD

In this work, we consider a different, asynchronous parallel variant of SGD, which we define in
Algorithm 1 and which has a long history [1, 4, 40]. For this method, whenever one of the M
machines finishes computing a stochastic gradient, the algorithm immediately uses it to take an
SGD step, and then that machine begins computing a new stochastic gradient at the newly updated
parameters. Because of the asynchronous updates, the other machines are now estimating the gradient
at out-of-date parameters, so this algorithm ends up performing updates of the form1

xk = xk−1 − γk∇f(xk−τ(k); ξk−τ(k)),

where τ(k) is the “delay” of the gradient at iteration k, which is often much greater than one.
Nevertheless, even though the updates are not necessarily well-aligned with the gradient of F at
the current parameters, the delays are usually not a huge problem in practice [17]. Asynchronous
SGD has been particularly popular in reinforcement learning applications [35, 38] and federated
learning [13, 42], providing significant speed-ups over Minibatch SGD.

However, the existing theoretical guarantees for Asynchronous SGD are disappointing, and the
typical approach to analyzing the algorithm involves assuming that all of the delays are either the
same, τ(k) = τ , or at least upper bounded, τ(k) 6 τmax [1, 4, 28, 31, 47]. These analyses then
show that the number of updates needed to reach accuracy ε grows linearly with τmax, which could
be very painful. Specifically, suppose we have two parallel workers—one fast device that needs
just 1µs to calculate a stochastic gradient, and one slow device that needs 1s. If we use these two
machines to implement Asynchronous SGD, the delay of the slow device’s gradients will be 1 million,
because in the 1 second that we wait for the slow machine, the fast one will produce 1 million updates.
Consequently, the analysis based on τmax degrades by a factor of 1 million. But on further reflection,
Asynchronous SGD should actually do very well in this scenario, after all, 99.9999% of the SGD
steps taken have gradients with no delay! Even if one update in a million has an enormous delay, it
seems fairly clear that a few badly out-of-date gradients should not be enough to ruin the performance
of SGD—a famously robust algorithm.

1.2 Speedup over Minibatch SGD

We will frequently compare Asynchronous SGD to Minibatch SGD, and to make this comparison
easier, suppose for simplicity that each worker requires a fixed time of sm seconds per gradient
computation, so in S seconds, each machine computes S/sm stochastic gradients. Importantly, this
translates into drastically different numbers of parameter updates for Asynchronous versus Minibatch
SGD: the former takes one step per gradient computed, while the latter only takes one step for each
gradient from the slowest machine. That is, Asynchronous and Minibatch SGD take

KAsync =

M∑
m=1

S

sm
and KMini = min

16m6M

S

sm
(2)

total steps, respectively. So, it is easy to see that Asynchronous SGD takes at least M times more
steps than Minibatch SGD in any fixed amount of time, and even more than that when the machines
have varying speeds. Soon, we will prove guarantees for Asynchronous SGD that match the guarantee
for Minibatch SGD using exactly M times fewer updates, meaning that our Asynchronous SGD
guarantees are strictly better than the Minibatch SGD guarantees in terms of runtime.

1.3 Contributions and structure

In this work, we provide a new analysis for Asynchronous SGD, described in Section 2, which we
use to prove better convergence guarantees. In contrast to the existing guarantees that are based

1Although this algorithm is asynchronous in the sense that different workers will have un-synchronized
iterates, we nevertheless focus on a situation where each SGD step is an atomic/locked update of the parameters
xk. This is in contrast to methods using lock-free updates, e.g., in the style of HOGWILD! [43], where different
coordinates of the parameters might be updated and overwritten simultaneously by different workers.

2

Table 1: Comparison of the convergence rates for smooth objectives in terms of K, the total number
of stochastic gradients used. For Minibatch SGD with R updates with minibatch size M , it holds
K = MR. For simplicity, we ignore all logarithmic and constant terms. The stated rates are upper
bounds on E

[
‖∇F (x)‖2

]
in the non-convex case, and E [F (x)− F ∗] in the (strongly) convex case.

Method and reference Convex Strongly Convex Non-Convex

Minibatch SGD(a)

Gower et al. [21]
Khaled and Richtárik [26]

M
K + σ√

K
e
−µK
LM + σ2

K
M
K + σ√

K

Asynchronous SGD
(fixed delay τ)

Stich and Karimireddy [47]

τ
K + σ√

K
τe
−µK
Lτ + σ2

K
τ
K + σ√

K

Asynchronous SGD
(arbitrary delays)

Our work

M
K + σ√

K
e
−µK
LM + σ2

K
M
K + σ√

K

(a) Gower et al. [21] analyzed SGD in the strongly convex regime and Khaled and Richtárik [26] in the non-convex

regime.

on τmax, ours depend only on the number of workers, M , and show that Asynchronous SGD is
better than the Minibatch SGD algorithm described earlier. For Lipschitz-continuous objectives,
our results in Section 2.1 improve over existing Asynchronous and Minibatch SGD guarantees, and
in the non-smooth, convex setting they are, in fact, minimax optimal. In Section 2.2, we prove
state-of-the-art guarantees for smooth losses, which are summarized in Table 1. We do this by
introducing a novel delay-adaptive stepsize schedule γk ∼ 1/τ(k). The high-level intuition behind
our proofs is that, although some of the gradients may have very large delay, most of the gradients
have delay O(M), which is enough for good performance.

1.4 Related work

Asynchronous optimization has a long history. In the 1970s, Baudet [8] considered shared-memory
asynchronous fixed-point iterations, and an early convergence result for Asynchronous SGD was
established by Tsitsiklis et al. [48]. Recent analysis typically relies on bounded delays [1, 29, 43, 47].
Sra et al. [45] slightly relax this to random delays with bounded expectation. Zhou et al. [53] allowed
delays to grow over time, but only show asymptotic convergence. Some algorithms try to adapt to
the delays, but even these are not proven to perform well under arbitrary delays [34, 52]. For more
examples of stochastic asynchronous algorithms, we refer readers to the surveys by Assran et al.
[6], Ben-Nun and Hoefler [9].

In the online learning setting, Joulani et al. [24], McMahan and Streeter [32] studied an adaptive
asynchronous SGD algorithm. Aviv et al. [7] proved better guarantees on bounded domains by
introducing a projection, with rates depending on the average rather than maximum delay. However,
their proof relies heavily on the assumption of a bounded domain, while ours applies for optimization
over all of Rd. Relatedly, Cohen et al. [15] prove guarantees for Asynchronous SGD that depend on
the average delay, but their results only hold with probability 1

2 .

Most closely related to ours, Mania et al. [31] proposed and utilized the analysis tool of “virtual
iterates” for Asynchronous SGD under bounded delays. Stich and Karimireddy [47] extended these
results, albeit restricting delays to be constant, and Leblond et al. [28] considered lock-free updates.
We use the same proof approach, but with a different virtual sequence and different, delay-adaptive
stepsizes.

More broadly, there are numerous other parallel training approaches that could improve upon Mini-
batch SGD. Particularly popular lines of work include gradient compression [2, 10, 47], decentralized
communication [30, 39], and local updates with infrequent communication [27, 33, 46, 49]. These
are all orthogonal to asynchrony and can even be combined with it [see, e.g., 5, 19, 37].

3

Algorithm 1 Asynchronous SGD

1: Input: initialization x0 ∈ Rd, stepsizes γt > 0
2: Each worker m ∈ [M] begins calculating ∇f(x0; ξm0)
3: for k = 1, 2, . . . do
4: Gradient ∇f(xprev(k,mk); ξ

mk
prev(k,mk)) arrives from some worker mk

5: Update: xk = xk−1 − γk∇f(xprev(k,mk); ξ
mk
prev(k,mk))

6: Send xk to worker mk, which begins calculating∇f(xk; ξmkk)
7: end for

1.5 Notation and problem setting

We consider solving the problem (1) under several standard [see, e.g., 11] combinations of conditions
on the objective F . We denote the minimum of F as F ∗ := minx F (x), an upper bound on the
initial suboptimality ∆ > F (x0)−F ∗, and an upper bound on the initial distance to the minimizer
B > min{‖x0 − x∗‖ : x∗ ∈ argminx F (x)}. Here, and throughout this paper we focus on the
Euclidean geometry and use ‖·‖ to denote the Euclidean norm; however, it is likely possible to extend
our results to other geometries using similar arguments. Our optimization variable lies in Rd, but our
algorithm and results are dimension-free, meaning they hold for any d.

A function F is µ-strongly convex if for each x,y and subgradient g ∈ ∂F (x), we have F (y) >
F (x)+ 〈g, y − x〉+ µ

2 ‖x−y‖2, and F is convex if this holds for µ = 0. When F and f are convex,
we do not necessarily assume they are differentiable, but we abuse notation and use ∇F (x) and
∇f(x; ξ) to denote an arbitrary subgradient at x. The loss f is G-Lipschitz-continuous if for each
x,y and ξ, we have |f(x; ξ)−f(y; ξ)| 6 G‖x−y‖, which also implies that for each x, ‖∇f(x; ξ)‖ 6
G [11]. The objective F is L-smooth if it is differentiable and its gradient is L-Lipschitz-continuous:
for all x,y, ‖∇F (x)−∇F (y)‖ 6 L‖x− y‖. We may also assume the stochastic gradients have
σ2-bounded variance, meaning that for all x, Eξ∼D‖∇f(x; ξ)−∇F (x)‖2 6 σ2.

When the objective is (strongly) convex, we will obtain an upper bound on the expected suboptimality
of our algorithm’s output, x̃, i.e., EF (x̃) − F ∗ 6 ε for some explicit ε. On the other hand, when
the objective is not convex, it is generally intractable to approximate global minima [41] so, as
is common in the literature, we fall back to showing that the algorithm will find an approximate
first-order stationary point of the objective: E‖∇F (x̃)‖2 6 ε2.

Finally, we mainly focus on “homogeneous” optimization, where each machine computes each
stochastic gradient using an i.i.d. sample ξ ∼ D. This is in contrast to the “heterogeneous” setting,
where different machines have access to data drawn from different sources, meaning that stochastic
gradients estimated on different machines can have different distributions (see Section 2.3).

Delay notation. The gradients used by Algorithm 1 may arrive out of order, so the parameters xk
at iteration k will often be updated using stochastic gradients ∇f(xj ; ξj) evaluated at out-of-date
parameters xj for j < k − 1; we therefore introduce additional notation for describing the delays.
We use mk ∈ [M] to denote the index of the worker whose stochastic gradient estimate is used in
iteration k to compute xk. In addition, for each iteration k and worker m, we introduce

prev(k,m) = max{j < k : mj = m} and next(k,m) = min{j > k : mj = m},
which denotes the index of the last iteration before k in which machine m returned a gradient, and
the index of the first iteration after k (inclusive) that machine m will return a gradient, respectively.
Accordingly, at iteration k, machine m is in the process of estimating ∇f(xprev(k,m); ξ

m
prev(k,m)).

We define the current “delay” of this gradient as the number of iterations that have happened since
prev(k,m), i.e., τ(k,m) := k − prev(k,m). Abusing notation, we shorten to τ(k) := τ(k,mk) for
the delay of the gradient used to compute xk.

2 Analysis of Asynchronous SGD

The central idea in our analysis is to focus on a virtual iterate sequence, which tracks, roughly, how
the parameters would have evolved if there were no delays. We note that this sequence is only used
for the purpose of analysis, and is never actually computed. This technique is related to previous

4

approaches [28, 31, 47], with the key difference being which virtual sequence we track. Specifically,
in addition to x0, . . . ,xK—the actual sequence of iterates generated by Algorithm 1—we introduce
the complementary sequence x̂1, . . . , x̂K which evolves according to

x̂k+1 = x̂k − γ̂k∇f(xk; ξmkk),

where x̂1 := x0 −
∑M

m=1
γnext(1,m)∇f(x0; ξm0) and γ̂k := γnext(k+1,mk) .

(3)

This virtual sequence x̂k+1 evolves almost according to SGD (without delays), although we note that
it uses gradients evaluated at xk rather than x̂k. The stepsize used for this update, γ̂k, is the stepsize
that is eventually used by Algorithm 1 when it takes a step using the gradient evaluated at xk. The
core of our proofs is showing that xk and x̂k remain close using the following Lemma:
Lemma 1. Let {xk} and {x̂k} be defined as in Algorithm 1 and (3), respectively. Then for all k > 1

xk − x̂k =
∑

m∈[M]\{mk}

γnext(k,m)∇f(xprev(k,m); ξ
m
prev(k,m)) .

Proof. First, we expand the update of xk in Algorithm 1, and of x̂k in (3). Denoting ek = xk − x̂k,
ek = ek−1 − γk∇f(xprev(k,mk); ξ

mk
prev(k,mk)) + γ̂k−1∇f(xk−1; ξ

mk−1

k−1)

= e1 −
k∑
j=2

γj∇f(xprev(j,mj); ξ
mj
prev(j,mj)

) +

k−1∑
j=1

γ̂j∇f(xj ; ξ
mj
j)

=

M∑
m=1

γnext(1,m)∇f(x0; ξm0)−
k∑
j=1

γj∇f(xprev(j,mj); ξ
mj
prev(j,mj)

) +

k−1∑
j=1

γ̂j∇f(xj ; ξ
mj
j) .

From here, we note that the second term, which comprises all of the gradients used by Algorithm 1 to
make the first k updates, can be rewritten as:

−
M∑
m=1

γnext(1,m)∇f(x0; ξm0)1{next(1,m)6k} −
k−1∑
i=1

γ̂i∇f(xi; ξ
mi
i)1{next(i,mi)6k} ,

and substituting into the expression for ek above, there are k cancellations and the claim follows.

How does this help us? For all of our results, our strategy is to show that the virtual iterates x̂k
evolve essentially according to SGD (without delays), that ‖xk − x̂k‖ remains small throughout the
algorithm’s execution, and therefore that the Asynchronous SGD iterates xk are nearly as good as
SGD without delays. Lemma 1 is key for the second step. Whereas previous work tries to bound
‖xk − x̂k‖ by reasoning about the delays involved in the first k updates, we observe that xk − x̂k
is just the sum of M − 1 gradients, so our bound naturally incurs a dependence on M , but it is not
directly affected by the delays themselves.

2.1 Convergence guarantees for Lipschitz losses

We begin by analyzing Algorithm 1 for convex, Lipschitz-continuous losses:
Theorem 1. Let the objective F be convex, let f(·; ξ) be G-Lipschitz-continuous for each ξ, and
let there be a minimizer x∗ ∈ argminx F (x) for which ‖x0 − x∗‖ 6 B. Then for any number of
iterations2 K >M , Algorithm 1 with constant stepsize γk = γ = B/(G

√
KM) ensures

E
[
F

(
1

K

∑K

k=1
xk

)
− F ∗

]
6

3GB
√
M√

K
.

Proof. Let x∗ ∈ argminx F (x) with ‖x0 − x∗‖ 6 B. First, we follow the typical analysis of
stochastic gradient descent [see, e.g., 11, Theorem 3.2] by expanding the update of x̂k+1 from (3):

E‖x̂k+1 − x∗‖2 = E
[
‖x̂k − x∗‖2 + γ2‖∇f(xk; ξmkk)‖2 − 2γ 〈∇F (xk), x̂k − x∗〉

]
6 E

[
‖x̂k − x∗‖2 + γ2G2 − 2γ[F (xk)− F ∗] + 2γ 〈∇F (xk), xk − x̂k〉

]
6 E

[
‖x̂k − x∗‖2 + γ2G2 − 2γ[F (xk)− F ∗] + 2γG‖xk − x̂k‖

]
.

2W.l.o.g. we can take M 6 K because at most K of the workers are actually able participate in the first K
updates of Algorithm 1, and machines that do not participate can simply be ignored in the analysis.

5

For the first inequality, we used the convexity of F and that f(·; ξ) being G-Lipschitz implies
‖∇f(x; ξ)‖ 6 G for all x; for the second, we again used the G-Lipschitzness of f(·; ξ) along with
the Cauchy-Schwarz inequality. Continuing as in the standard SGD analysis, we rearrange the
expression, average over K, apply the convexity of F , and telescope the sum to conclude:

E

[
F

(
1

K

K∑
k=1

xk

)
− F ∗

]
6 E

[
‖x̂1 − x∗‖2

2γK
+
γG2

2
+
G

K

K∑
k=1

‖xk − x̂k‖

]
. (4)

The first two terms almost exactly match the guarantee of SGD with fixed stepsize γ. The main
difference—and the place where Lemma 1 and the Lipschitzness of the losses plays a key role—is in
bounding the third term. Since ‖∇f(xprev(k,m); ξ

m
prev(k,m))‖ 6 G, we just use the triangle inequality:

‖xk − x̂k‖ =
∥∥∥ ∑
m∈[M]\{mk}

γ∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥ 6 (M − 1)γG. (5)

Combining this with ‖x̂1 − x∗‖2 = ‖x0 − γ
∑M
m=1∇f(x0; ξm0)− x∗‖2 6 2B2 + 2γ2M2G2, and

plugging in our stepsize in (4) completes the proof.

To understand this result, it is instructive to recall the worst-case performance of KMini steps of
Minibatch SGD [41] in the setting of Theorem 1:

E[F (xMini)− F ∗] = O
(
GB/

√
KMini

)
. (6)

From this, we see that our guarantee for Asynchronous SGD in Theorem 1 matches the rate for
KMini = K/M steps of Minibatch SGD. Furthermore, at least in the simplified model of Section
1.2, Asynchronous SGD takes at least M times more steps than Minibatch SGD in a given span of
time, and therefore Theorem 1 guarantees better performance than (6) in terms of runtime. Moreover,
previous analyses of Asynchronous SGD [e.g., 47] provide guarantees with τmax replacing M in our
bound. Since necessarily τmax >M , this means that our guarantee is never worse than the existing
ones and it can be much better, for example, in a case where one severe straggler results in τmax ≈ K
but M � K. In fact, our guarantee in Theorem 1 is minimax optimal in the setting that we consider
[see 50, Section 4.3], and as summarized in Table 2.

Finally, we emphasize that although M appears in the numerator of the error guarantee in Theorem 1,
this does not mean that the guarantee necessarily degrades when more parallel workers are added. In
particular, adding more workers always means that more gradients will be calculated in any given
amount of runtime. More concretely, in the model of Section 1.2 where the machines have fixed
speeds, the expression for KAsync = KAsync(S, s1, . . . , sm) in (2) implies that adding an (M + 1)th

machine gives a better guarantee whenever sM+1 is smaller than the harmonic mean of s1, . . . , sM :

sM+1 6

(
1

M

M∑
m=1

1

sm

)−1

=⇒ M + 1

KAsync(S, s1, . . . , sM+1)
6

M

KAsync(S, s1, . . . , sM)
.

Following the same high-level approach, we can also analyze Algorithm 1 for non-convex objectives,
the proof being deferred to Appendix C.
Theorem 2. Let F be L-smooth, f(·; ξ) be G-Lipschitz-continuous for every ξ, let ∆ > F (x0)−F ∗,
and let the stochastic gradients have variance at most σ2. Then Algorithm 1 with stepsize γ =

min
{

1
2ML ,

√
∆

Lσ2K ,
(

∆
L2M2G2K

)1/3}
, ensures for any K >M

1

K

K∑
k=1

E‖∇F (xk)‖2 = O

(
ML∆

K
+

√
L∆σ2

K
+

(
ML∆G

K

)2/3
)
.

2.2 Convergence guarantees for non-Lipschitz losses

Now, we analyze smooth but not necessarily Lipschitz-continuous losses. The previous proofs relied
crucially on the gradients being bounded in norm in order to control xk − x̂k. For general smooth
losses, the situation is more difficult because ‖∇f(xprev(k,m); ξ

m
prev(k,m))‖ could be large. Our

6

Table 2: We compare optimization terms in the smooth and convex setting and the resulting speed-ups
in the fixed-computation-speed model of Section 1.2. We denote smax := maxm sm and approximate
the maximum delay as τmax =

∑M
m=1 smax/sm. The speedup is the largest factor α such that

Asynchronous SGD attains the same error in S seconds as Minibatch SGD would in αS seconds.

Method # of Updates Optimization Term Speedup

Minibatch SGD R = S
smax

O
(

1
R

)
1

Asynchronous SGD
(prior works) K =

∑M
m=1

S
sm

O
(
τmax

K

)
1

Asynchronous SGD
(our work) K =

∑M
m=1

S
sm

O
(
M
K

)
1
M

∑M
m=1

smax

sm
> 1

solution to this issue is to introduce a new delay-adaptive stepsize schedule γk ∼ 1/τ(k), which
we show allows for sufficient control over ‖xk − x̂k‖. Similar stepsizes have been considered by
Wu et al. [51] for the PIAG algorithm, while the stepsizes for Asynchronous SGD used in previous
analyses typically scale with 1/τmax [e.g., 47]. Thus, our analysis shows that we can get away with a
more aggressive stepsize to get better rates. However, our stepsize choice could be problematic if it
were correlated with the noise in the stochastic gradients because our proofs involve the step:

Eξmk
prev(k,mk)

∼D

[
γk∇f(xprev(k,mk); ξ

mk
prev(k,mk))

]
= γk∇F (xprev(k,mk)).

Therefore, we introduce the following assumption about the relationship between the delays and data:

Assumption 1. The stochastic sequences (ξ1, ξ2, . . .) and (τ(0), τ(1), . . .) are independent.

This assumption holds, for example, when it takes a fixed amount of computation to evaluate any
stochastic gradient, and the combination of the (potentially heterogeneous) computational throughput
on the different workers and network latency gives rise to the delays. However, this can fail to hold,
for instance, when training a model with variable-length inputs, in which case the delays will probably
depend on the length of the input sequences, so it will likely also be related to the gradient noise. The
next Theorem shows our convergence guarantees under Assumption 1 for Asynchronous SGD with
novel delay-adaptive stepsizes scaling with 1/τ(k):
Theorem 3. Suppose F is L-smooth, that Assumption 1 holds, that B > E‖x0 − x∗‖2 for some
minimizer x∗, and ∆ > EF (x0)− F ∗. Then there exist numerical constants c1, c2, c3, c4 such that:

1. For convex F , K >M and γk = min
{

1
4Lτ(k) ,

1
4ML ,

B
σ
√
K

}
Algorithm 1 ensures

E [F (x̃K)− F ∗] 6 c1 ·
(
MLB2

K
+
σB√
K

)
,

where x̃K is the weighted average3 of x1, . . . ,xK defined in (22).

2. For µ-strongly convex F ,K > 3M , and γk = min
{

exp(−µτ(k)
4ML)

4Lτ(k) , 1
4ML ,

504 ln
(
e+µ2K2B2

σ2

)
µK

}
Algorithm 1 ensures

E[F (x̃K)− F ∗] 6 c2 ·
(
MLB2 exp

(
−c3Kµ
ML

)
+
σ2

µT
log

(
e+

µ2K2B2

σ2

))
,

where x̃K is the weighted average of x1, . . . ,xK defined in (24).

3. For non-convex F , K >M , and γk = min
{

1
2Lτ(k) ,

1
2ML ,

√
∆

KLσ2

}
Algorithm 1 ensures

E
[
‖∇F (x̃K)‖2

]
6 c4 ·

(
ML∆

K
+

√
L∆σ2

K

)
,

where x̃K is randomly chosen from x1, . . . ,xK according to (27).
3The weight on each iterate xk is proportional to γ̂k, which depends on the eventual delay of ∇f(xk; ξ

mk
k),

and is thus not yet known at iteration k. However, on line 4 of Algorithm 1, the worker could simply return
both its gradient and the point at which it was evaluated, so that the term γ̂kxk can simply be added at iteration
next(k + 1,mk) rather than at iteration k, so there is not need to store all of the previous iterates.

7

We defer the complete proof of the three parts to Appendices D.1, D.2, and D.3. However, to give a
sense of our approach, we will now sketch the ideas behind the proof of Theorem 3.1:

Proof sketch. We begin following the standard analysis of SGD for smooth, convex objectives. We
expand the update x̂k+1 from (3), and use the L-smoothness of the objective and the fact that the
stepsizes are less than 1/(4L) to obtain the inequality

E‖x̂k+1−x∗‖2 6 E
[
‖x̂k − x∗‖2 − 3

2
γ̂k(F (xk)− F ∗) + γ̂2

kσ
2 + 2γ̂k 〈∇f(xk; ξmkk), xk − x̂k〉

]
.

A key step above uses Assumption 1 to show γ̂k is independent of the gradient noise, meaning
E[γ̂k 〈∇f(xk; ξmkk), xk − x∗〉] = E[γ̂k 〈∇F (xk), xk − x∗〉] > E[γ̂k(F (xk)− F ∗)].

This is, so far, essentially identical to the first step of the typical SGD analysis, the only difference
being the fourth term. Rearranging the expression and summing over k, this implies

3

2

K∑
k=1

E[γ̂k(F (xk)− F ∗)] 6 E
[
‖x̂1−x∗‖2+σ2

K∑
k=1

γ̂2
k+2

K∑
k=1

γ̂k 〈∇f(xk; ξmkk), xk − x̂k〉
]
. (7)

This still resembles the typical SGD analysis except for the third term on the right hand side, but
we begin to see divergence here. First, we must bound this third term, for which we introduce the
following Lemma, proven by using Lemma 1 to write xk − x̂k as a sum of gradients:

Lemma 2. In the setting of Theorem 3.1,

E
[
2

K∑
k=1

γ̂k 〈∇f(xk; ξmkk), xk − x̂k〉
]
6 E

[B2

16
+

K∑
k=1

γ̂k(F (xk)− F ∗)
]
.

Combining this with (7) and using the convexity of F , we further conclude that

E

[
F

(∑K
k=1 γ̂kxk∑K
k=1 γ̂k

)
− F ∗

]
6 E

[
2∑K

k=1 γ̂k

(
B2

16
+ ‖x̂1 − x∗‖2 + σ2

K∑
k=1

γ̂2
k

)]
. (8)

This shows that a weighted average of the iterates—with xk unconventionally weighted by the
stepsize γ̂k rather than typical uniform weights—attains suboptimality inversely proportional to the
sum of the stepsizes. To conclude, we lower bound the sum of stepsizes in the denominator by a term
scaling with min{K/ML,B

√
K/σ}. All remaining proof details can be found in Appendix D.

To understand the implications, we recall the guarantees for R steps of Minibatch SGD using
minibatches of size M in the setting of Theorem 3, which are (ignoring all constants) [20, 41]:
E[F (xMini)− F ∗] 6 LB2

R + σB√
RM

in the convex setting, E[F (xMini)− F ∗] 6 LB2 exp(−µR/L) +

σ2

µRM in the strongly convex setting, and E‖∇F (xMini)‖2 6 L∆
R +

√
L∆σ2

/RM in the non-convex
setting. Comparing these to the guarantees for Asynchronous SGD in Theorem 3.1–3, we see that up
to constants (and logarithmic factors in the strongly convex case), our results match the guarantees
of R = K/M steps of Minibatch SGD with minibatch size M . As discussed in Section 1.2, each
update of Minibatch SGD takes the time needed by the slowest machine, meaning that in any given
amount of time, Asynchronous SGD will complete at least M times more updates than Minibatch
would. Therefore, the guarantees in Theorem 3 imply strictly better performance for Algorithm 1
than for Minibatch SGD in terms of guaranteed error after a fixed amount of time, as illustrated in
Table 2. Figure 1 depicts a simple experiment demonstrating this phenomenon in practice.

The first “optimization” terms in our guarantees match K/M steps of exact gradient descent, com-
pletely irrespective of the delays. In the convex cases, it is likely that these could be “accelerated”
to scale with (K/M)−2 or exp(−K√µ/M√L), but at the expense of a more complex algorithm and
analysis. However, by analogy to existing lower bounds [12, 50] we conjecture that the optimization
terms in Theorem 3.1–2 are the best “unaccelerated” rate we could hope for, and that the optimization
term in Theorem 3.3 is optimal. Moreover, despite the delays, the second “statistical” terms in our
guarantees are minimax optimal amongst all algorithms that use K stochastic gradients [3, 41]. So,
when the statistical terms dominate the rate, our guarantees are unimprovable in the worst case, and
in fact they even match what could be guaranteed by K steps of SGD without delays. Furthermore,
since the optimization terms decrease faster with K, in a realistic scenario where K � M , the
statistical term will eventually dominate the rate and our algorithm will have optimal performance
with no penalty from the delayed gradients at all.

8

0 5000 10000 15000 20000 25000 30000
Number of gradients

10-3

10-2

10-1

100

F
(x
)
¡
F
¤

Minibatch SGD
Asynchronous SGD
Delay-Adaptive AsySGD

0 200 400 600 800 1000 1200
Delay

100

101

102

103

104

Fr
eq

ue
nc
y

M

¿max

Figure 1: We ran an experiment on a simple least-squares problem with random data and tuned all
stepsizes. On the left, we see that after a fixed number of gradients are used, Asynchronous SGD is
slightly better than Minibatch SGD but it is also quite unstable, whereas with delay-adaptive stepsizes
it is both fast and stable. On the right, we can see the distribution of the delays (note that y-axis is in
log scale). Additional details about the experiment can be found in Appendix A.

2.3 Heterogeneous data

Finally, we extend our results to the heterogeneous data setting, where each worker m possesses its
own local data distribution Dm, giving rise to a local objective Fm. So the optimization problem in
the heterogeneous setting is:

min
x∈Rd

{
F (x) =

1

M

M∑
m=1

Fm(x)

}
, where Fm(x) = Eξ∼Dm [fm(x; ξ)] . (9)

In this setting, we define Asynchronous SGD the same way, with worker m having access to the
stochastic gradients∇fm(·; ξ) and updates taking the form:

xk = xk−1 − γk∇fmk(xprev(k,mk); ξ
mk
prev(k,mk)) . (10)

It is generally impossible to show that Asynchronous SGD will work well in this setting. Specifically,
if F2 = · · · = FM = 0, then the time needed to optimize F is entirely dependent on the speed of the
first worker. Moreover, with arbitrary delays, we might only get a single gradient update from the
first worker, leaving us no hope of any useful guarantee. To avoid this issue and to be able to apply
our analysis, we will require that the gradient dissimilarities between the local functions are bounded
and that the identity of the worker used in iteration k is independent of the gradient noise:
Assumption 2. There exists ζ > 0 such that ‖∇Fm(x) − ∇F (x)‖2 6 ζ2 for all m and x ∈ Rd,
E[gk|xk,mk] = ∇Fmk(xk), and E[‖gk −∇Fmk(xk)‖2|xk,mk] 6 σ2.

Equipped with the new assumption, we can provide an analogue of Theorem 3 for problem (9):
Theorem 4. In the setting of Theorem 3 with the addition of Assumption 2, for γk =
min{ 1

8Lτ(k) ,
1

4ML ,
√

∆/(KLσ2)}, the updates described in (10) ensure for a numerical constant c:

E
[
‖∇F (x̃K)‖2

]
6 c ·

(
ML∆

K
+

√
L∆σ2

K
+ ζ2

)
,

where x̃k is randomly chosen from x1, . . . ,xK according to (30).

Comparing Theorem 4—which we prove in Appendix E—with Theorem 3.3, we see that the exact
same rate is achieved in the heterogeneous setting up to the additive term ζ2. As described above, we
cannot really expect good performance for arbitrarily heterogeneous losses under arbitrary delays, so
some dependence on ζ2 is unavoidable. Moreover, in many natural settings, ζ2 can be quite small.
For instance, when heterogeneity arises because a large i.i.d. dataset is partitioned across the M
machines, the degree of heterogeneity ζ2 will be inversely proportional to the number of samples
assigned to each worker. So although Asynchronous SGD is not well-suited to problem (9) when the
delays can be arbitrarily large, at least under Assumption 2, it does not totally break down or diverge.

3 Acknowledgements

This work was supported by the French government under the management of the Agence Nationale
de la Recherche as part of the “Investissements d’aveni” program, reference ANR-19-P3IA-0001

9

(PRAIRIE 3IA Institute). We also acknowledge support from the European Research Council (grant
SEQUOIA 724063).

References
[1] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. Advances in

Neural Information Processing Systems, 24, 2011. (Cited on pages 2 and 3)

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in Neural
Information Processing Systems, 30, 2017. (Cited on page 3)

[3] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake Wood-
worth. Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365,
2019. (Cited on page 8)

[4] Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic
gradient descent with delayed updates. In Algorithmic Learning Theory, pages 111–132. PMLR,
2020. (Cited on page 2)

[5] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push
for distributed deep learning. In International Conference on Machine Learning, pages 344–353.
PMLR, 2019. (Cited on page 3)

[6] Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and
Michael G. Rabbat. Advances in asynchronous parallel and distributed optimization. Proceed-
ings of the IEEE, 108(11):2013–2031, 2020. (Cited on page 3)

[7] Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Asynchronous dis-
tributed learning: Adapting to gradient delays without prior knowledge. In Proceedings of the
International Conference on Machine Learning, volume 139, pages 436–445, 2021. (Cited on
page 3)

[8] Gerard M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM
(JACM), 25(2):226–244, 1978. (Cited on page 3)

[9] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019. (Cited on
page 3)

[10] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569, 2018. (Cited on page 3)

[11] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends
in Machine Learning, 8(3-4):231–357, 2015. (Cited on pages 4 and 5)

[12] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. arXiv preprint arXiv:1710.11606, 2017. (Cited on page 8)

[13] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala. FedAT:
a high-performance and communication-efficient federated learning system with asynchronous
tiers. In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–16, 2021. (Cited on page 2)

[14] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting
distributed synchronous SGD. arXiv preprint arXiv:1604.00981, 2016. (Cited on page 2)

[15] Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous
stochastic optimization robust to arbitrary delays. Advances in Neural Information Processing
Systems, 34, 2021. (Cited on page 3)

10

[16] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in Neural Information Processing Systems 24,
pages 1647–1655, 2011. (Cited on page 1)

[17] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems, 25, 2012. (Cited on page 2)

[18] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.
(Cited on page 1)

[19] Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié. Decentralized optimization with
heterogeneous delays: a continuous-time approach. arXiv:2106.03585, 2021. (Cited on page 3)

[20] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. URL
https://arxiv.org/abs/1309.5549. (Cited on page 8)

[21] Robert M. Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pages 5200–5209, 2019. (Cited on page 3)

[22] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017. (Cited on page 1)

[23] Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I. Venieris,
and Nicholas D. Lane. FjORD: Fair and accurate federated learning under heterogeneous targets
with ordered dropout. Advances in Neural Information Processing Systems, 34, 2021. (Cited on
page 1)

[24] Pooria Joulani, András György, and Csaba Szepesvári. Delay-tolerant online convex optimiza-
tion: Unified analysis and adaptive-gradient algorithms. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016. (Cited on page 3)

[25] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and open problems in federated learning, 2019. (Cited on page 1)

[26] Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv
Preprint arXiv:2002.03329, 2020. (Cited on page 3)

[27] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on
identical and heterogeneous data. In International Conference on Artificial Intelligence and
Statistics, pages 4519–4529. PMLR, 2020. (Cited on page 3)

[28] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous paral-
lel optimization analysis for stochastic incremental methods. Journal of Machine Learning
Research, 19:1–68, 2018. (Cited on pages 2, 3, and 5)

[29] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. Advances in Neural Information Processing Systems, 28, 2015.
(Cited on page 3)

11

https://arxiv.org/abs/1309.5549

[30] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017. (Cited on
page 3)

[31] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran,
and Michael I. Jordan. Perturbed iterate analysis for asynchronous stochastic optimization.
SIAM Journal on Optimization, 27(4):2202–2229, 2017. doi: 10.1137/16M1057000. (Cited on
pages 2, 3, and 5)

[32] Brendan McMahan and Matthew J. Streeter. Delay-tolerant algorithms for asynchronous
distributed online learning. Advances in Neural Information Processing Systems, 27, 2014.
(Cited on page 3)

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017. (Cited on page 3)

[34] Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A delay-
tolerant proximal-gradient algorithm for distributed learning. In International Conference on
Machine Learning, pages 3584–3592, 2018. (Cited on page 3)

[35] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International Conference on Machine Learning, pages 1928–1937, 2016.
(Cited on page 2)

[36] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A
distributed framework for emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 561–577, 2018. (Cited on page 14)

[37] Giorgi Nadiradze, Amirmojtaba Sabour, Peter Davies, Shigang Li, and Dan Alistarh. Asyn-
chronous decentralized SGD with quantized and local updates. Advances in Neural Information
Processing Systems, 34, 2021. (Cited on page 3)

[38] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro
De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296,
2015. (Cited on page 2)

[39] Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent opti-
mization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009. (Cited on page 3)

[40] Angelia Nedić, Dimitri P. Bertsekas, and Vivek S. Borkar. Distributed asynchronous incremental
subgradient methods. Studies in Computational Mathematics, 8(C):381–407, 2001. (Cited on
page 2)

[41] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983. (Cited on pages 4, 6, and 8)

[42] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek,
and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pages 3581–3607, 2022. (Cited on page 2)

[43] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent. Advances in Neural Information Processing
Systems, 24, 2011. (Cited on pages 2 and 3)

[44] Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Moshpit
SGD: Communication-efficient decentralized training on heterogeneous unreliable devices.
Advances in Neural Information Processing Systems, 34, 2021. (Cited on page 2)

12

[45] Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J. Smola. Adadelay: Delay adaptive
distributed stochastic optimization. In Artificial Intelligence and Statistics, pages 957–965.
PMLR, 2016. (Cited on page 3)

[46] Sebastian U. Stich. Local SGD converges fast and communicates little. In International
Conference on Learning Representations, 2018. (Cited on page 3)

[47] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better
rates for SGD with delayed gradients and compressed updates. Journal of Machine Learning
Research, 21:1–36, 2020. (Cited on pages 2, 3, 5, 6, and 7)

[48] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE transactions on automatic control, 31(9):
803–812, 1986. (Cited on page 3)

[49] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan
Mcmahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In
International Conference on Machine Learning, pages 10334–10343. PMLR, 2020. (Cited on
page 3)

[50] Blake E. Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
oracle models, lower bounds, and gaps for parallel stochastic optimization. Advances in Neural
Information Processing Systems, 31, 2018. (Cited on pages 6 and 8)

[51] Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
adaptive step-sizes for asynchronous learning. arXiv preprint arXiv:2202.08550, 2022. (Cited
on page 7)

[52] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In International
Conference on Machine Learning, pages 4120–4129, 2017. (Cited on page 3)

[53] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia
Li, and Li Fei-Fei. Distributed asynchronous optimization with unbounded delays: How slow
can you go? In International Conference on Machine Learning, pages 5970–5979. PMLR,
2018. (Cited on page 3)

[54] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems, pages 2595–2603,
2010. (Cited on page 1)

13

A Experimental details

To showcase how our theory matches the numerical performance of Asynchronous SGD, we run
experiments on a simple quadratic objective with random data. We run our experiments on a single
node with 48 logical cores and set M = 40. We use the Ray package [36] to parallelize the execution
and follow the official documentation for the implementation4 of asynchronous training. For further
reproducibility, we will release our code online.

B Intermediate results

Lemma 3. Under Assumption 1 and the σ2 variance bound, if γk depends only on k and τ(k) for
each k, then for all k > 1,

E‖xk − x̂k‖2 6 2E

 ∑
m∈[M]\{mk}

γ2
next(k,m)

[
σ2 + (M − 1)

∥∥∇F (xprev(k,m))
∥∥2
].

Proof. By Lemma 1, we have

E‖xk − x̂k‖2 = E

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥∥∥
2

6 2E

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m)))

∥∥∥∥∥
2

.

Notice that we had to use Young’s inequality to separate expectations from the variance terms since
the variance in the vectors is not independent. The first term can be bounded using Young’s inequality
as follows,

E

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥
2

6
∑

m∈[M]

γ2
next(k,m)‖∇F (xprev(k,m))‖2.

To bound the second term, assume without loss of generality that prev(k, 1) < prev(k, 2) < · · · <
prev(k,M). In addition, denote

θm = γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m))).

Then, we have for any m

E
[
‖θm‖2

]
= γ2

next(k,m)E‖∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m))‖2 6 γ2

next(k,m)σ
2.

Moreover, for anym ∈ [1,M−1], the stochastic gradient of workerm+1 has conditional expectation

E
[
∇f(xprev(k,m+1); ξ

m+1
prev(k,m+1)) | ∇f(xprev(k,m); ξ

m
prev(k,m))

]
= ∇F (xprev(k,m+1)),

4https://docs.ray.io/en/latest/ray-core/examples/plot_parameter_server.html#
asynchronous-parameter-server-training

14

https://docs.ray.io/en/latest/ray-core/examples/plot_parameter_server.html#asynchronous-parameter-server-training
https://docs.ray.io/en/latest/ray-core/examples/plot_parameter_server.html#asynchronous-parameter-server-training

so E [θm+1 | θ1, . . . ,θm] = 0. This allows us to obtain by induction,

E

‖m+1∑
j=1

θj‖2
 = E

‖ m∑
j=1

θj‖2 + 2〈
m∑
j=1

θj ,θm+1〉+ ‖θm+1‖2

6 E

‖ m∑
j=1

θj‖2 + 2〈
m∑
j=1

θj ,θm+1〉

+ γ2
next(k,m+1)σ

2

6 E

 m∑
j=1

γ̂2
t−τjσ

2 + 2〈
m∑
j=1

θj ,θm+1〉

+ γ2
next(k,m+1)σ

2

= E

2〈
m∑
j=1

θj ,θm+1〉

+

m+1∑
j=1

γ2
next(k,j)σ

2.

The remaining scalar product is, in fact, equal to zero. Indeed, by the tower property of expectation,

E

〈 m∑
j=1

θj ,θm+1〉

 = E

E
〈 m∑

j=1

θj ,θm+1〉 | θ1, . . . ,θm

= E

〈 m∑
j=1

θj ,E [θm+1 | θ1, . . . ,θm]〉

= 0.

Therefore,

E

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m)))

∥∥∥∥∥
2

6
∑

m∈[M]\{mk}

γ2
next(k,m)σ

2.

Lemma 3 is very useful whenever stochastic gradients are not guaranteed to be bounded. If they were
bounded, we could immediately show that E‖xk − x̂k‖2 is small regardless of the delays, as was
done in the proof of Theorem 1, see equation (5). For non-Lipschitz losses, however, E‖xk − x̂k‖2
is not guaranteed to be finite, and Lemma 3 is required to show that x̂k and xk stay sufficiently close
to each other.

The next lemma is a general statement about sequences with delays, which we will use to bound
various error terms in our proofs.

Lemma 4. For any positive sequences {ak}, {bk}, and {ck}, it holds

K∑
k=1

∑
m∈[M]\{mk}

akbprev(k,m)cnext(k,m) = b0

M∑
m=1

cnext(1,m)

min{next(1,m)−1, K}∑
j=1

aj

+

K−1∑
k=1

bkcnext(k+1,mk)

min{next(k+1,mk)−1, K}∑
j=k+1

aj .

15

Proof. The proof follows simply by rewriting the sums several times while manipulating the defini-
tions of prev and next:
K∑
k=1

∑
m∈[M]\{mk}

akbprev(k,m)cnext(k,m)

=

K−1∑
j=0

K∑
k=1

M∑
m=1

akbjcnext(k,m)1{m 6=mk}1{j=prev(k,m)}

= b0

K∑
k=1

M∑
m=1

akcnext(k,m)1{m6=mk}1{0=prev(k,m)}

+

K−1∑
j=1

K∑
k=1

M∑
m=1

akbjcnext(k,m)1{m6=mk}1{j=prev(k,m)}

= b0

M∑
m=1

cnext(1,m)

min{next(1,m), K}∑
k=1

ak1{m6=mk}

+

K−1∑
j=1

bjcnext(j+1,mj)

min{next(j+1,mj), K}∑
k=j+1

ak1{mj 6=mk}

= b0

M∑
m=1

cnext(1,m)

min{next(1,m)−1, K}∑
k=1

ak +

K−1∑
j=1

bjcnext(j+1,mj)

min{next(j+1,mj)−1, K}∑
k=j+1

ak,

which establishes the claim after exchanging subscripts.

C Proof of Theorem 2

We are ready to prove Theorem 2, which assumes that the losses are Lipschitz continuous. This
assumption makes the proof shorter than that of more general Theorem 3, but on the downside, its
rate has an extra O(1/K2/3) term.
Theorem 2. Let F be L-smooth, f(·; ξ) be G-Lipschitz-continuous for every ξ, let ∆ > F (x0)−F ∗,
and let the stochastic gradients have variance at most σ2. Then Algorithm 1 with stepsize γ =

min
{

1
2ML ,

√
∆

Lσ2K ,
(

∆
L2M2G2K

)1/3}
, ensures for any K >M

1

K

K∑
k=1

E‖∇F (xk)‖2 = O

(
ML∆

K
+

√
L∆σ2

K
+

(
ML∆G

K

)2/3
)
.

Proof. By the L-smoothness of F , the σ2-bounded variance of the stochastic gradients, and the fact
γ 6 1/(2L)

E [F (x̂k+1)] 6 E
[
F (x̂k) + 〈∇F (x̂k), x̂k+1 − x̂k〉+

L

2
‖x̂k+1 − x̂k‖2

]
= E

[
F (x̂k)− γ〈∇F (x̂k),∇F (xk)〉+

Lγ2

2
‖gk‖2

]
6 E

[
F (x̂k) +

(
Lγ2

2
− γ

2

)
‖∇F (xk)‖2 +

γ

2
‖∇F (xk)−∇F (x̂k)‖2 +

Lγ2σ2

2

]
6 E

[
F (x̂k)− γ

4
‖∇F (xk)‖2 +

L2γ

2
‖xk − x̂k‖2 +

Lγ2σ2

2

]
.

For the third term, we use Lemma 1 and the G-Lipschitzness of f(·; ξ) to bound

‖xk − x̂k‖2 =

∥∥∥∥∥∥
∑

m∈[M]\{mk}

γgprev(k,m)

∥∥∥∥∥∥
2

6 γ2(M − 1)2G2.

16

Rearranging and averaging over K, we conclude

1

K

K∑
k=1

E‖∇F (xk)‖2 6
4

γK

K∑
k=1

E
[
F (x̂k)− F (x̂k+1) +

γ3L2(M − 1)2G2

2
+
γ2Lσ2

2

]
6

4(F (x̂1)− F ∗)
γK

+ 2γ2L2(M − 1)2G2 + 2γLσ2.

All that remains is to bound F (x̂1)− F ∗. By the definition of x̂1 from (3), the L-smoothness of F ,
and the fact that γ 6 2/(ML)

E[F (x̂1)− F ∗] 6 E

F (x̂0)− F ∗ − γ
M∑
m=1

〈∇F (x0), ∇f(x0; ξm0)〉+
γ2L

2

∥∥∥∥∥
M∑
m=1

∇f(x0; ξm0)

∥∥∥∥∥
2

6 E
[
∆ +

(
γ2LM2

2
− γM

)
‖∇F (x0)‖2 +

γ2LMσ2

2

]
6 E

[
∆ +

γ2LMσ2

2

]
Substituting this into the expression above, we conclude

1

K

K∑
k=1

E‖∇F (xk)‖2 6
4∆

γK
+ 4γLσ2 + 2γ2L2M2G2,

and plugging in the stepsize completes the proof.

We note that the expression for the stepsize comes from the idea of equalizing the terms in the last
upper bound.

D Proof of Theorem 3

Throughout this proof, we will refer frequently to γ̂1, . . . , γ̂K , the stepsizes corresponding to the
stochastic gradients∇f(x1, ξ

m1
1), . . . ,∇f(xK , ξ

mK
K). However, some of these gradients will not be

available when the algorithm ends after K updates—in particular, precisely M − 1 of them are in the
process of being calculated when the algorithm terminates. Since those gradients are never used for
updates, the corresponding stepsize γ̂k seems, in some sense, unneeded. However, our algorithm’s
output weights each iterate xk by a term involving γ̂k, whether or not the gradient ∇f(xk, ξ

mk
k)

becomes available before the algorithm finishes. For this reason, in order to make the stepsize
γ̂k well-defined, we specify τ(k) for k > K, upon which γ̂1, . . . , γ̂K might depend, according to
τ(k) := max{1, min{k,K} − prev(k,mk)}. This is essentially equivalent to just not incrementing
the iteration counter once it reaches K, although we note that all of the stepsizes γ̂1, . . . , γ̂K can be
calculated by the time of the Kth update, without needing to wait for the M − 1 in-progress gradients.

D.1 Convex case

Lemma 2. In the setting of Theorem 3.1,

E
[
2

K∑
k=1

γ̂k 〈∇f(xk; ξmkk), xk − x̂k〉
]
6 E

[B2

16
+

K∑
k=1

γ̂k(F (xk)− F ∗)
]
.

Proof. In this proof, we denote gk := ∇f(xk; ξmkk) and ζk := 2γ̂k 〈gk, xk − x̂k〉. We begin by
applying Lemma 1, using the fact that for any a,b, it holds 2 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2 6
‖a‖2 + ‖b‖2, and using Assumption 1:

E

[
K∑
k=1

ζk

]
= 2E

[
K∑
k=1

γ̂k 〈gk, xk − x̂k〉

]

= 2E

 K∑
k=1

γ̂k

〈
gk,

∑
m∈[M]\{mk}

γnext(k,m)gprev(k,m)

〉
6 E

 K∑
k=1

∑
m∈[M]\{mk}

γ̂2
k‖∇F (xk)‖2 + γ2

next(k,m)‖∇F (xprev(k,m))‖2
 . (11)

17

First, we bound the sum of the second terms using Lemma 4 with ak = 1, bk = ‖∇F (xk)‖2, and
ck = γ2

k:
K∑
k=1

∑
m∈[M]\{mk}

γ2
next(k,m)‖∇F (xprev(k,m))‖2

6 ‖∇F (x0)‖2
M∑
m=1

γ2
next(1,m) min{next(1,m)− 1,K}

+

K−1∑
k=1

γ̂2
k‖∇F (xk)‖2(min{next(k + 1,mk)− 1,K} − k). (12)

From here, we note that our choice of stepsize ensures

γk 6
1

4Lτ(k)
=⇒ γ̂k 6

1

4L(min{next(k + 1,mk),K} − k)
(13)

and also γk 6 1
4LM for all k, so substituting back into (12), we can upper bound

K∑
k=1

∑
m∈[M]\{mk}

γ2
next(k,m)‖∇F (xprev(k,m))‖2

6
‖∇F (x0)‖2

4L

M∑
m=1

γnext(1,m) +
1

4L

K−1∑
k=1

γ̂k‖∇F (xk)‖2 (14)

6
B2

16
+

1

2

K−1∑
k=1

γ̂k(F (xk)− F ∗). (15)

Plugging this into (11), we have

E

[
K∑
k=1

ζk

]
6 E

[
B2

16
+

K∑
k=1

(
2L(M − 1)γ̂2

k +
1

2
γ̂k

)
(F (xk)− F ∗)

]
(16)

6 E

[
B2

16
+

K∑
k=1

γ̂k(F (xk)− F ∗)

]
, (17)

which completes the proof.

To show fast convergence rates, we need to first show that overall the stepsizes are not too small. This
is a little bit tricky because our stepsizes are delay-adaptive. Nevertheless, updates with large delays
are rare, so it is natural that the majority of the stepsizes are sufficiently large.
Lemma 5. In the setting of Theorem 3.1, it holds with probability one

K∑
k=1

γ̂k > min
{ K

36LM
,
B
√
K

3σ

}
.

Proof. First, we note that if τ(k) 6 3M , then

γk = min

{
1

12ML
,

B

σ
√
K

}
.

Next, we observe that ifm 6= mk, then τ(k+1,m) = τ(k,m)+1 and τ(k+1,mk) = 1 6 τ(k,mk).
Therefore,

M∑
m=1

τ(k + 1,m) 6M − 1 +

M∑
m=1

τ(k,m). (18)

Since
∑M
m=1 τ(1,m) = M , we can conclude that

K−1∑
k=1

τ(k) +

M∑
m=1

τ(K,m) 6
K∑
k=1

M∑
m=1

τ(k,m) 6 KM. (19)

18

This implies that at most bK/3c of the terms on the left hand side can be larger than 3M . Furthermore,
since the first 3M gradients must have delay less than 3M , the number of terms with delay greater
than 3M is no larger than min{K/3, max{K − 3M, 0}}. This allows us to bound

K∑
k=1

γ̂k =

K−1∑
k=1

γk1{prev(k,mk)>0} +

M∑
m=1

γnext(K,m)1{prev(K,m)>0}

> min

{
1

12ML
,

B

σ
√
K

}(K−1∑
k=1

1{prev(k,mk)>0}1{τ(k,mk)63M}

+

M∑
m=1

1{prev(K,m)>0}1{τ(K,m)63M}

)
> min

{
1

12LM
,

B

σ
√
T

}(
K − 1−min

{
K

3
, max{K − 3M, 0}

})
> min

{
1

12LM
,

B

σ
√
K

}
min

{
K

3
, K − 1

}
.

If K > 2, then we conclude that

K∑
k=1

γ̂k > min

{
K

36LM
,
B
√
K

3σ

}
as claimed. Otherwise, if K = 1 then also M = 1, so all delays are one and

K∑
k=1

γ̂k = γ̂1 = min

{
1

4L
,
B

σ

}
> min

{
K

36LM
,
B
√
K

3σ

}
,

which completes the proof.

Proof of Theorem 3.1. We begin by expanding the update of x̂k+1 from (3):

‖x̂k+1 − x∗‖2 = ‖x̂k − x∗‖2 + γ̂2
k‖gk‖2 − 2γ̂k 〈gk, x̂k − x∗〉

= ‖x̂k − x∗‖2 + γ̂2
k‖gk‖2 − 2γ̂k 〈gk, xk − x∗〉+ 2γ̂k 〈gk, xk − x̂k〉 .

From here, we take the expectation of both sides and bound the right hand side term-by-term. Because
the stochastic variance is bounded by σ2, F is L-smooth, and Assumption 1 holds,

E
[
γ̂2
k‖gk‖2

]
6 E

[
γ̂2
k(‖∇F (xk)‖2 + σ2)

]
6 E

[
2Lγ̂2

k(F (xk)− F ∗) + γ̂2
kσ

2)
]
.

Likewise, by Assumption 1 and the convexity of F , we have

E[γ̂k 〈gk, xk − x∗〉] = E[γ̂k 〈∇F (xk), xk − x∗〉] > E[γ̂k(F (xk)− F ∗)].

Finally, we denote ζk := 2γ̂k 〈gk, xk − x̂k〉 and we will come back to address this term later.
Combining the above inequalities, rearranging, and using that γk 6 1

4L for all k so 2Lγ̂2
k−2γ̂k 6 3

2 γ̂k,
we have

3

2
E[γ̂k(F (xk)− F ∗)] 6 E

[
‖x̂k − x∗‖2 − ‖x̂k+1 − x∗‖2 + γ̂2

kσ
2 + ζk

]
.

Summing over all k, we get

3

2
E

[
K∑
k=1

γ̂k(F (xk)− F ∗)

]
6 E

[
‖x̂1 − x∗‖2 + σ2

K∑
k=1

γ̂2
k +

K∑
k=1

ζk

]
.

So, applying Lemma 2 to the third term and rearranging, we bo

E

[
K∑
k=1

γ̂k(F (xk)− F ∗)

]
6 2E

[
B2

16
+ ‖x̂1 − x∗‖2 + σ2

K∑
k=1

γ̂2
k

]
. (20)

19

Applying the definition of x̂1 from (3), and using that for convex, L-smooth F and any x,
〈∇F (x), x− x∗〉 > 1

L‖∇F (x)‖2, we have

E‖x̂1 − x∗‖2 = E

∥∥∥∥∥x0 −
M∑
m=1

γnext(1,m)∇f(x0; ξm0)− x∗

∥∥∥∥∥
2

6 E

∥∥∥∥∥x0 −
M∑
m=1

γnext(1,m)∇F (x0)− x∗

∥∥∥∥∥
2

+ σ2E
M∑
m=1

γ2
next(1,m)

6 B2 + E

(M∑
m=1

γnext(1,m)

)2

‖∇F (x0)‖2

− 2E

[
M∑
m=1

γnext(1,m) 〈∇F (x0), x0 − x∗〉

]
+ σ2E

M∑
m=1

γ2
next(1,m)

6 B2 + E

[(
− 2

L
+

M∑
m=1

γnext(1,m)

)(
M∑
m=1

γnext(1,m)

)
‖∇F (x0)‖2

]

+ σ2E
M∑
m=1

γ2
next(1,m)

6 B2 + σ2E
M∑
m=1

γ2
next(1,m), (21)

because
∑M
m=1 γnext(1,m) 6

1
4L . Returning to (20), for

x̃K :=
1∑K

k=1 γ̂k

K∑
k=1

γ̂kxk (22)

we conclude by the convexity of F that

E[F (x̃K)− F ∗] 6 E

[
1∑K

k=1 γ̂k

K∑
k=1

γ̂k(F (xk)− F ∗)

]

6 E

[
3B2∑K
k=1 γ̂k

+
2σ2

∑K
k=1 γ̂

2
k∑K

k=1 γ̂k

]
.

From here, all that remains is to observe that

2σ2
K∑
k=1

γ̂2
k 6 2σ2

K∑
k=1

(
B

σ
√
K

)2

= 2B2

and by Lemma 5
K∑
k=1

γ̂k > min

{
K

36ML
,
B
√
K

3σ

}
.

So, we can conclude that

E[F (x̃K)− F ∗] 6 E

[
5B2∑K
k=1 γ̂k

]
6

5B2

min
{

K
36ML ,

B
√
K

3σ

} 6
180MLB2

K
+

15σB√
K

,

which completes the proof.

D.2 Strongly convex case

Lemma 6. In the setting of Theorem 3.2, with γmax defined as in (23),

E

[
2L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]
6
σ2Mγ2

max

2
+
B2

32
+ E

[
σ2γmax

2

K∑
k=1

γ̂kP̂k +
1

4

K∑
k=1

γ̂kP̂kFk

]
.

20

Proof. We start by applying Lemma 3 and then Lemma 4 with ak = γ̂kP̂k, bk = σ2 + (M −
1)‖∇F (xk)‖2, and ck = γ2

k:

E

[
4L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]

6 4LE

 K∑
k=1

∑
m 6=mk

akγ
2
next(k,m)

[
σ2 + (M − 1)

∥∥∇F (xprev(k,m))
∥∥2
]

6 4LE
[(
σ2 + (M − 1)‖∇F (x0)‖2

) M∑
m=1

γ2
next(1,m)

min{next(1,m)−1, K}∑
j=1

aj

+

K−1∑
k=1

(
σ2 + (M − 1)‖∇F (xk)‖2

)
γ2

next(k+1,mk)

min{next(k+1,mk)−1, K}∑
j=k+1

aj

]

6 4LE
[(
σ2 + 2LMF0

) M∑
m=1

γ2
next(1,m)

min{next(1,m)−1, K}∑
j=1

aj

+

K−1∑
k=1

(
σ2 + 2LMFk

)
γ̂2
k

min{next(k+1,mk)−1, K}∑
j=k+1

aj

]
.

Since the sequence P̂k is increasing, for each k we can bound ak = γ̂kP̂k 6 γmaxP̂j for any j > k.
So, denoting n1,m := min{next(1,m)− 1,K} and nk = min{next(k + 1,mk)− 1,K} for short,
we have

E

[
4L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]
6 4LE

[(
σ2 + 2LMF0

) M∑
m=1

γ2
next(1,m)n1,mγmaxP̂n1,m

+

K−1∑
k=1

(
σ2 + 2LMFk

)
γ̂2
k(nk − k)γmaxP̂nk

]
.

We also have that for j > k

P̂j

P̂k
= exp

(
µ

j∑
i=k+1

γ̂i

)
6 eµγmax(j−k),

so,

E

[
4L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]
6 4LγmaxE

[(
σ2 + 2LMF0

) M∑
m=1

γ2
next(1,m)n1,me

µγmaxn1,m

+

K−1∑
k=1

(
σ2 + 2LMFk

)
γ̂2
k(nk − k)P̂ke

µγmax(nk−k)

]
.

We now recall our choice of stepsize

γk 6
exp
(
−µτ(k)

4ML

)
4Lτ(k)

6
exp(−µγmaxτ(k))

4Lτ(k)
,

which implies for each j that

γ̂j 6
1

4L(nj − j + 1)
exp(−µγmax(nj − j + 1))

and
γnext(1,m) 6

1

4Ln1,m
exp(−µγmax(n1,m + 1)).

21

Therefore,

E

[
4L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]

6
γmax

2
E

[(
σ2 + L2MB2

) M∑
m=1

γnext(1,m) +

K−1∑
k=1

(
σ2 + 2LMFk

)
γ̂kP̂k

]

6
σ2Mγ2

max

2
+
B2

32
+ E

[
σ2γmax

2

K−1∑
k=1

γ̂kP̂k +
1

4

K−1∑
k=1

γ̂kP̂kFk

]
,

where we used that γmax 6 1/(4ML) and F0 6 1
2LB

2.

Lemma 7. In the setting of Theorem 3.2, with γmax defined as in (23), we have with probability 1

K∑
k=1

γ̂kP̂k > max

{
Kγmax

42
,
γmax

7
exp

(
Kµγmax

504

)}
.

Proof. First, we note that if τ(k) 6 3M , then since γmax 6 1
4LM :

γk > min

{
γmax

exp
(
− 3µ

4L

)
12ML

}
>
γmax

7
.

As in the proof of Lemma 5, we recall that τ(k,m) denotes the current delay of the mth worker’s
gradient. We begin by observing that ifm 6= mk, then τ(k+1,m) = τ(k,m)+1 and τ(k+1,mk) =
1 6 τ(k,mk). Therefore,

M∑
m=1

τ(k + 1,m) 6M − 1 +

M∑
m=1

τ(k,m).

Since
∑M
m=1 τ(1,m) = M , we can conclude that for every J 6 K

J∑
k=1

τ(k) 6
J∑
k=1

M∑
m=1

τ(k,m) 6 JM.

This implies that at most bJ/3c of the terms on the left hand side can be larger than 3M . Furthermore,
since the first 3M gradients must have delay less than 3M , the number of terms with delay greater
than 3M is no larger than min{J/3, max{J − 3M, 0}}. This allows us to bound for each J 6 K

J∑
k=1

γ̂k >
J∑
k=1

γk1{prev(k,mk)>0}

>
J∑
k=1

γk1{prev(k,mk)>0}1{τ(k)63M}

>
γmax

7

J∑
k=1

1{prev(k,mk)>0}1{τ(k)63M}

>
γmax

7

(
J −M −min

{
J

3
, max{J − 3M, 0}

})
=
γmax

7
max

{
2J

3
−M, min{2M, J −M}

}
> max

{
γmax(J −M)

14
, 0

}
.

22

With this in hand, we again observe
K−1∑
k=1

τ(k) +

M∑
m=1

τ(K,m) 6
K∑
k=1

M∑
m=1

τ(k,m) 6 KM.

This implies that at most bK/3c of the terms on the left hand side can be larger than 3M . Furthermore,
since the first 3M gradients must have delay less than 3M , the number of terms with delay greater
than 3M is no larger than min{K/3, max{K − 3M, 0}}. So,
K∑
k=1

γ̂kP̂k >
K−1∑
k=1

γkP̂prev(k,mk)1{prev(k,mk)>0} +

M∑
m=1

γnext(K,m)P̂prev(K,m)1{prev(K,m)>0}

>
γmax

7

(K−1∑
k=1

P̂prev(k,mk)1{prev(k,mk)>0}1{τ(k)63M}

+

M∑
m=1

P̂prev(K,m)1{prev(K,m)>0}1{τ(K,m)63M}

)

>
γmax

7
min

ι1,...,ιK∈{0,1}

{
K∑
k=1

P̂k(1− ιk) s.t.
K∑
k=1

ιk 6 min

{
K

3
, max{K − 3M, 0}

}}

>
γmax

7

2K/3∑
k=1

P̂k =
γmax

7

2K/3∑
k=1

exp

µ k∑
j=1

γ̂j

>
γmax

7

2K/3∑
k=1

exp

(
(k −M)µγmax

14

)

>
γmax

7

K/6∑
k=1

exp

(
kµγmax

84

)
> max

{
Kγmax

42
,
γmax

7
exp

(
Kµγmax

504

)}
,

where we used that P̂k is increasing, then the lower bound on the sum of stepsizes from above, and
then that K > 3M so k −M > k/6 for k > K/2.

Proof of Theorem 3.2. Throughout the proof, we will use γmax to denote the τ(k)-independent
portion of the stepsize, i.e.,

γmax := min

 1

4ML
,

504 log
(
e+ µ2K2B2

σ2

)
µK

. (23)

Mirroring the typical analysis of SGD, we begin by recalling the updates of x̂k+1 from (3) and
expanding:

E‖x̂k+1 − x∗‖2 = E‖x̂k − γ̂k∇f(xk; ξmkk)− x∗‖2

= E
[
‖x̂k − x∗‖2 + γ̂2

k‖∇f(xk; ξmkk)‖2 − 2γ̂k 〈∇f(xk; ξmkk), x̂k − x∗〉
]

6 E
[
‖x̂k − x∗‖2 + γ̂2

kσ
2 + γ̂2

k‖∇F (xk)‖2 − 2γ̂k 〈∇F (xk), xk − x∗ + x̂k − xk〉
]
.

For the inequality, we used Assumption 1 and the σ2 stochastic gradient variance bound. To proceed,
the L-smoothness of F implies ‖∇F (xk)‖2 6 2L(F (xk) − F ∗), and to bound the final term, we
use the µ-strong convexity of F and the inequality 2 〈a, b〉 6 α‖a‖2 + α−1‖b‖2 for any α > 0, so:
−2γ̂k 〈∇F (xk), xk − x∗ + x̂k − xk〉

6 −2γ̂k

(
F (xk)− F ∗ +

µ

2
‖xk − x∗‖2

)
+ γ̂k

(
1

2L
‖∇F (xk)‖2 + 2L‖xk − x̂k‖2

)
6 −γ̂k(F (xk)− F ∗)− µγ̂k‖xk − x∗‖2 + 2Lγ̂k‖xk − x̂k‖2.

23

Combining this with the above, and using that γk 6 1
4L for all k, so 2Lγ̂2

k − γ̂k 6 1
2 γ̂k, we conclude

E‖x̂k+1 − x∗‖2 6 E
[
(1− µγ̂k)‖x̂k − x∗‖2 + γ̂2

kσ
2 − γ̂k

2
Fk + 2Lγ̂k‖xk − x̂k‖2

]
.

where Fk := F (xk)− F ∗. From here, we define a weighting of the iterates

P̂k := exp

(
−µ

k∑
j=1

γ̂j

)
,

we multiply both sides of the expression by P̂k, sum over k, and use that 1− µγ̂k 6 exp(−µγ̂k) in
order to telescope the sum, getting:

E

[
1

2

K∑
k=1

γ̂kP̂kFk

]

6 E

[
K∑
k=1

P̂k

(
(1− µγ̂k)‖x̂k − x∗‖2 − ‖x̂k+1 − x∗‖2 + γ̂2

kσ
2 + 2Lγ̂k‖xk − x̂k‖2

)]

6 E

[
‖x̂1 − x∗‖2 +

K∑
k=2

[
(1− µγ̂k)P̂k − P̂k−1

]
‖x̂k − x∗‖2 +

K∑
k=1

P̂k
(
γ̂2
kσ

2 + 2Lγ̂k‖xk − x̂k‖2
)]

6 E

[
‖x̂1 − x∗‖2 + σ2

K∑
k=1

γ̂2
kP̂k + 2L

K∑
k=1

γ̂kP̂k‖xk − x̂k‖2
]
.

We apply Lemma 6 and rearrange, giving
K∑
k=1

γ̂kP̂kFk 6 E

[
B2

8
+ 4‖x̂1 − x∗‖2 + 2σ2Mγ2

max + 6σ2γmax

K∑
k=1

γ̂kP̂k

]
.

In the proof of the smooth convex case of Theorem 3, we derived the following upper bound in (21):

E‖x̂1 − x∗‖2 6 E

[
‖x0 − x∗‖2 + σ2

M∑
m=1

γ2
next(1,m)

]
6 B2 + σ2Mγ2

max .

Therefore, for

x̃K :=

∑K
k=1 γ̂kP̂kxk∑K
k=1 γ̂kP̂k

, (24)

we conclude by the convexity of F that

E[F (x̃K)− F ∗] 6 E

[∑K
k=1 γ̂kP̂kFk∑K
k=1 γ̂kP̂k

]
6 E

[
5B2 + 6σ2Mγ2

max∑K
k=1 γ̂kP̂k

+ 6σ2γmax

]
.

To conclude, we use Lemma 7 to lower bound the denominator of the first term:

E[F (x̃K)− F ∗] 6 5B2 + 6σ2Mγ2
max

max
{
Kγmax

42 , γmax

7 exp
(
Kµγmax

504

)} + 6σ2γmax

6
35B2

γmax
exp

(
−Kµγmax

504

)
+ 252σ2γmax.

Plugging in our choice of γmax from (23) completes the proof.

D.3 Non-convex case

Lemma 8. In the setting of Theorem 3.3, with γmax defined as in (26)

E

[
L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2
]
6 E

[
∆

8
+
Lσ2γmax

4

(
Mγmax +

K∑
k=1

γ̂k

)
+

1

8

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

24

Proof. We start using Lemma 3 and then Lemma 4 with ak = γ̂k, bk = σ2 + (M − 1)‖∇F (xk)‖2,
and ck = γ2

k:

E

[
L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

6 L2E

 K∑
k=1

γ̂k
∑

m∈[M]\{mk}

γ2
next(k,m)

[
σ2 + (M − 1)

∥∥∇F (xprev(k,m))
∥∥2
]

6 L2γmaxE
[(
σ2 + (M − 1)‖∇F (x0)‖2

) M∑
m=1

γ2
next(1,m) min{next(1,m)− 1, K}

+

K−1∑
k=1

(
σ2 + (M − 1)‖∇F (xk)‖2

)
γ̂2
k(min{next(k + 1,mk)− 1, K} − k)

]
.

From here, note that our choice of stepsize

γk 6
1

4Lτ(k)

implies

γnext(1,m) min{next(1,m)− 1, K} 6 1

4L
,

γ̂k(min{next(k + 1,mk)− 1, K} − k) 6
1

4L
.

Plugging these two inequalities into our previous bound, we obtain

E

[
L2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

6
Lγmax

4
E

[(
σ2 +M‖∇F (x0)‖2

) M∑
m=1

γnext(1,m) +

K−1∑
k=1

(
σ2 +M‖∇F (xk)‖2

)
γ̂k

]

6 E

[
MLγ2

max

4

(
σ2 +M‖∇F (x0)‖2

)
+
Lσ2γmax

4

K∑
k=1

γ̂k +
MLγmax

4

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

Using the fact that γmax 6 1/(2ML) and ‖∇F (x0)‖2 6 2L∆ completes the proof.

Lemma 9. In the setting of Theorem 3.3, with γmax defined as in (26)

K∑
k=1

γ̂k >
Kγmax

9
.

Proof. First, we note that if τ(k) 6 3M , then

γk = min

{
1

6L
,

1

2ML
,

√
∆

KLσ2

}
>
γmax

3
.

Following the proofs of Lemmas 5 and 7, we begin with the observation that

K−1∑
k=1

τ(k,mk) +

M∑
m=1

τ(K,m) 6
K∑
k=1

M∑
m=1

τ(k,m) 6 KM. (25)

This implies that at most bK/3c of the terms on the left hand side can be larger than 3M . Furthermore,
since the first 3M gradients must have delay less than 3M , the number of terms with delay greater
than 3M is no larger than min{K/3, max{K − 3M, 0}}.

25

From here, we rewrite:
K∑
k=1

γ̂k =

K−1∑
k=1

γk1{prev(k,mk)>0} +

M∑
m=1

γnext(K,m)1{prev(K,m)>0}

>
K−1∑
k=1

γk1{prev(k,mk)>0}1{τ(k,mk)63M} +

M∑
m=1

γnext(K,m)1{prev(K,m)>0}1{τ(K,m)63M}

>
γmax

3

(
K−1∑
k=1

1{prev(k,mk)>0}1{τ(k,mk)63M} +

M∑
m=1

1{prev(K,m)>0}1{τ(K,m)63M}

)

>
γmax

3

(
K +M − 1−

(
min

{
K

3
, max{K − 3M, 0}

}
+M

))
=
γmax

3
max

{
2T

3
− 1, min{3M − 1, T − 1}

}
>
γmax

3
min

{
T

3
, T − 1

}
.

For K > 2, the Lemma follows directly. For K = 1, we also have M = 1 so all of the delays are
one, and

∑K
k=1 γ̂k = γ̂1 = min

{
γmax,

1
2L

}
> Kγmax

9 . Therefore, this inequality holds either way,
completing the proof.

Proof of Theorem 3.3. In this proof, we will use γmax to denote the τ(k)-independent terms in the
definition of the stepsize, i.e.,

γmax := min

{
1

2ML
,

√
∆

KLσ2

}
. (26)

Next, we use the L-smoothness of F , the definition of x̂k+1 from (3), and Assumption 1:

EF (x̂k+1) 6 E
[
F (x̂k) + 〈∇F (x̂k), x̂k+1 − x̂k〉+

L

2
‖x̂k+1 − x̂k‖2

]
= E

[
F (x̂k)− γ̂k 〈∇F (x̂k), ∇F (xk)〉+

Lγ̂2
k

2
‖∇f(xk; ξmkk)‖2

]
6 E

[
F (x̂k) +

(
Lγ̂2

k

2
− γ̂k

2

)
‖∇F (xk)‖2 +

γ̂k
2
‖∇F (x̂k)−∇F (xk)‖2 +

Lσ2γ̂2
k

2

]
6 E

[
F (x̂k) +

(
Lγ̂2

k

2
− γ̂k

2

)
‖∇F (xk)‖2 +

L2γ̂k
2
‖xk − x̂k‖2 +

Lσ2γ̂2
k

2

]
.

Since γk 6 1
2L for all k, this means

E[F (x̂k+1)− F (x̂k)] 6 E
[
− γ̂k

4
‖∇F (xk)‖2 +

L2γ̂k
2
‖xk − x̂k‖2 +

Lσ2γ̂2
k

2

]
.

Rearranging and summing over k, this means

1

4
E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
6 E

[
F (x̂1)− F (x̂K+1) +

L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2 +
Lσ2

2

K∑
k=1

γ̂2
k

]

6 E

[
∆ +

L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2 +
Lσ2

2

K∑
k=1

γ̂2
k

]
.

Applying Lemma 8 and rearranging, this gives

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
6 E

[
9∆ + 2MLσ2γ2

max + 6Lσ2γmax

K∑
k=1

γ̂k

]
.

26

Therefore, if we choose an output vector x̃K with

P(x̃K = xk) ∝ γ̂k ∀k ∈ [K], (27)

then by Lemma 9,

E
[
‖∇F (x̃K)‖2

]
6 E

[
9∆ + 2MLσ2γ2

max∑K
k=1 γ̂k

+ 6Lσ2γmax

]

6 E
[

81∆ + 18MLσ2γ2
max

Kγmax
+ 6Lσ2γmax

]
.

Substituting γmax from (26) completes the proof.

E The heterogeneous data setting

The analysis in this section is not too different from that before. The main idea here is to refine the
upper bound on the distance between the virtual and actual iterates, which can be done using our
assumption on bounded data heterogeneity.
Lemma 10. In the setting of Theorem 4, for any k > 1

E‖xk − x̂k‖2 6 2E

 ∑
m∈[M]\{mk}

γ2
next(k,m)

[
σ2 + 2(M − 1)

(∥∥∇F (xprev(k,m))
∥∥2

+ ζ2
)].

Proof. The argument below is nearly identical to the proof of Lemma 3. We start with an analogue
of Lemma 1:

xk − x̂k =
∑

m∈[M]\{mk}

γnext(k,m)∇fm(xprev(k,m); ξ
m
prev(k,m)) ,

which follows from exactly the same argument. We then use Assumptions 1 and 2 in the same way as
in the proof of 3:

E‖xk − x̂k‖2 = E

∥∥∥∥∥∥
∑

m∈[M]\{mk}

γnext(k,m)∇fm(xprev(k,m); ξ
m
prev(k,m))

∥∥∥∥∥∥
2

6 2E

σ2
∑

m∈[M]\{mk}

γ2
next(k,m) +

∥∥∥∥∥∥
∑

m∈[M]\{mk}

γnext(k,m)∇Fm(xprev(k,m))

∥∥∥∥∥∥
2

6 2E

[
σ2

∑
m∈[M]\{mk}

γ2
next(k,m) + 2

∥∥∥∥∥∥
∑

m∈[M]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥ ∑
m∈[M]\{mk}

γnext(k,m)

(
∇Fm(xprev(k,m))−∇F (xprev(k,m)

)∥∥∥∥∥
2]

6 2E

 ∑
m∈[M]\{mk}

γ2
next(k,m)

[
σ2 + 2(M − 1)

∥∥∇F (xprev(k,m))
∥∥2

+ 2(M − 1)ζ2
].

Lemma 11. In the setting of Theorem 4, with γmax defined as in (28)

8L2
K∑
k=1

γ̂k‖xk − x̂k‖2

6 E

[
∆

4
+ Lγmaxσ

2

(
Mγmax +

K∑
k=1

γ̂k

)
+ ζ2

(
2LM2γ2

max +
1

2

K∑
k=1

γ̂k

)
+

1

2

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

27

Proof. This follows exactly the same argument as Lemma 8, just replacing that proof’s invocation of
Lemma 3 with Lemma 10:

E

[
8L2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

6 16L2E

 K∑
k=1

γ̂k
∑

m∈[M]\{mk}

γ2
next(k,m)

[
σ2 + 2(M − 1)

(∥∥∇F (xprev(k,m))
∥∥2

+ ζ2
)]

6 16L2γmaxE
[(
σ2 + 2M(‖∇F (x0)‖2 + ζ2)

) M∑
m=1

γ2
next(1,m) min{next(1,m)− 1, K}

+

K−1∑
k=1

(
σ2 + 2M(‖∇F (xk)‖2

)
+ ζ2)γ̂2

k(min{next(k + 1,mk)− 1, K} − k)

]
.

The stepsize is chosen so that

γk 6
1

16Lτ(k)
,

which implies

γnext(1,m) min{next(1,m)− 1, K} 6 1

16L
,

γ̂k(min{next(k + 1,mk)− 1, K} − k) 6
1

16L
.

Therefore,

E

[
L2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

6 2LγmaxE
[(
σ2 + 2M(‖∇F (x0)‖2 + ζ2)

) M∑
m=1

γnext(1,m)

+

K−1∑
k=1

(
σ2 + 2M(‖∇F (xk)‖2

)
+ ζ2)γ̂k

]

6 LγmaxE

[
Mγmax

(
σ2 + 4LM2∆ + 2Mζ2

)
+ σ2

K∑
k=1

γ̂k + 2M

K∑
k=1

γ̂k(‖∇F (xk)‖2 + ζ2)

]
.

6 E

[
∆

4
+ Lγmaxσ

2

(
Mγmax +

K∑
k=1

γ̂k

)
+ ζ2

(
2LM2γ2

max +
1

2

K∑
k=1

γ̂k

)
+

1

2

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

We used here that γk 6 1/(8ML) and ‖∇F (x0)‖2 6 2L∆.

Proof of Theorem 4. In this proof, we will use γmax to denote the τ(k)-independent terms in the
definition of the stepsize, i.e.,

γmax := min

{
1

4ML
,

√
∆

KLσ2

}
. (28)

As in the data-homogeneous setting, we define the virtual sequence x̂k as:

x̂1 := x0 −
M∑
m=1

γnext(1,m)∇fm(x0; ξm0)

x̂k+1 = x̂k − γ̂k∇fmk(xk; ξmkk),

γ̂k := γnext(k+1,mk) .

(29)

28

Denote gk = ∇fmk(xk; ξmkk). Using the L-smoothness of F and Assumptions 1 and 2, we have:

E[F (x̂k+1)− F (x̂k)]

6 E
[
−γ̂k〈∇F (x̂k),gk〉+

γ̂2
kL

2
‖gk‖2

]
6 E

[
−γ̂k〈∇F (x̂k),∇Fmk(xk)〉+

γ̂2
kL

2
(‖∇Fmk(xk)‖2 + σ2)

]
6 E

[
− γ̂k

4
‖∇Fmk(xk)‖2 +

γ̂k
2
‖∇F (x̂k)−∇Fmk(xk)‖2 +

γ̂2
kLσ

2

2

]
6 E

[
− γ̂k

4
‖∇Fmk(xk)‖2 + γ̂k‖∇F (x̂k)−∇F (xk)‖2 + γ̂kζ

2 +
γ̂2
kLσ

2

2

]
6 E

[
− γ̂k

8
‖∇F (xk)‖2 + L2γ̂k‖xk − x̂k‖2 +

5γ̂kζ
2

4
+
γ̂2
kLσ

2

2

]
.

For the third inequality, we used that γk 6 1
2L for all k. For the fifth, we used that ‖∇F (x)‖2 6

2‖∇Fm(x)‖2 + 2ζ2 for any m and x. Rearranging and summing over k, we then have

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
6 E

[
8(F (x̂1)− F ∗) +

K∑
k=1

(
8L2γ̂k‖xk − x̂k‖2 + 10γ̂kζ

2 + 4γ̂2
kLσ

2
)]
.

Now, we apply Lemma 11 to bound the second term on the right hand side:

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]

6 E

[
16(F (x̂1)− F ∗) +

∆

2
+ 2Lγmaxσ

2

(
Mγmax + 2

K∑
k=1

γ̂k

)
+ ζ2

(
4LM2γ2

max + 11

K∑
k=1

γ̂k

)]
.

Therefore, if we choose an output x̃K according to

P(x̃K = xk) ∝ γ̂k ∀k ∈ [K], (30)

then E[‖∇F (x̃K)‖2 is less than this previous expression divided by
∑K
k=1 γ̂k. By exactly the same

argument as for Lemma 9, we can lower bound this sum as:

K∑
k=1

γ̂k >
Kγmax

18
.

Therefore, for some constant c (which may change from line to line), we have

E[‖∇F (x̃K)‖2

6 c · E
[

(F (x̂1)− F ∗)
Kγmax

+
∆

Kγmax
+ Lγmaxσ

2

(
M

K
+ 1

)
+ ζ2

(
LM2γmax

K
+ 1

)]
6 c · E

[
(F (x̂1)− F ∗)

Kγmax
+

∆

Kγmax
+ Lγmaxσ

2 + ζ2

]
.

29

Here, we used that γmax 6 1/(4ML) and M 6 K. To conclude, we bound

E[F (x̂1)− F ∗]

= E

[
F

(
x0 −

M∑
m=1

γnext(1,m)∇fm(x0; ξm0)

)
− F ∗

]

6 ∆ + E

−〈∇F (x0),

M∑
m=1

γnext(1,m)∇Fm(x0)

〉
+
L

2

∥∥∥∥∥
M∑
m=1

γnext(1,m)∇fm(x0; ξm0)

∥∥∥∥∥
2

6 ∆ + E
[

1

2L
‖∇F (x0)‖2 + L

∥∥∥∥∥
M∑
m=1

γnext(1,m)∇Fm(x0)

∥∥∥∥∥
2

+
Lσ2

2

M∑
m=1

γ2
next(1,m)

]

6 2∆ + E

[
L
(

2‖∇F (x0)‖2 + 2ζ2
)
M

M∑
m=1

γ2
next(1,m) +

MLσ2γ2
max

2

]

6 2∆ + E
[
LM2γ2

max

(
4L∆ + 2ζ2

)
+
MLσ2γ2

max

2

]
6 3∆ + E

[
Kγmaxζ

2

2
+
KLσ2γ2

max

2

]
.

Plugging this and γmax in above completes the proof.

30

	1 Introduction
	1.1 Asynchronous SGD
	1.2 Speedup over Minibatch SGD
	1.3 Contributions and structure
	1.4 Related work
	1.5 Notation and problem setting

	2 Analysis of Asynchronous SGD
	2.1 Convergence guarantees for Lipschitz losses
	2.2 Convergence guarantees for non-Lipschitz losses
	2.3 Heterogeneous data

	3 Acknowledgements
	A Experimental details
	B Intermediate results
	C Proof of Theorem 2
	D Proof of Theorem 3
	D.1 Convex case
	D.2 Strongly convex case
	D.3 Non-convex case

	E The heterogeneous data setting

